精英家教網 > 高中數學 > 題目詳情
設函數f(x)=cos(2x-
π
3
)-cos2x
,x∈R.
(Ⅰ)求f(x)在(0,
π
2
)
上的值域;
(Ⅱ)記△ABC的內角A,B,C的對邊長分別為a,b,c,若f(A)=1,a=
7
,b=3
,求c的值.
(I)f(x)=cos(2x-
π
3
)-cos2x
=cos2xcos
π
3
+sin2xsin
π
3
-cos2x
 
=
3
2
sin2x-
1
2
cos2x
=sin(2x-
π
6
)
.∵x∈(0,
π
2
)
,∴2x-
π
6
∈(-
π
6
,
6
)
,
sin(2x-
π
6
)∈(-
1
2
,1]
,即f(x)在(0,
π
2
)
的值域為(-
1
2
,1]

(II)由(I)可知,f(A)=sin(2A-
π
6
)
,∴sin(2A-
π
6
)=1

∵0<A<π,∴-
π
6
<2A-
π
6
11π
6
,∴2A-
π
6
=
π
2
,A=
π
3

∵a2=b2+c2-2bccosA,把a=
7
,b=3
代入,得到c2-3c+2=0,∴c=1或c=2.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=在區(qū)間上單調遞減,則實數a的取值范圍是(    )

  A.                         B.                 C.                      D..Co

查看答案和解析>>

同步練習冊答案