(2012•楊浦區(qū)一模)“a=2”是“函數(shù)f(x)=|x-a|在[2,+∞)上是增函數(shù)”的( 。
分析:函數(shù)f(x)=|x-a|的圖象是關(guān)于x=a對稱的折線,在[a,+∞)上為增函數(shù),由題意[2,+∞)⊆[a,+∞),可求a的范圍.
解答:解:若“a=2”,則函數(shù)f(x)=|x-a|=|x-2|在區(qū)間[2,+∞)上為增函數(shù);
而若f(x)=|x-a|在區(qū)間[2,+∞)上為增函數(shù),則a≤2,
所以“a=2”是“函數(shù)f(x)=|x-a|在區(qū)間[1,+∞)上為增函數(shù)”的充分不必要條件,
故選A.
點評:本題考查充要條件的判斷和已知函數(shù)單調(diào)性求參數(shù)范圍問題,對函數(shù)f(x)=|x-a|的圖象要熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•楊浦區(qū)一模)已知f(x)是R上的偶函數(shù),且滿足f(x+4)=f(x),當x∈(0,2)時,f(x)=2x2,則f(7)=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•楊浦區(qū)一模)設(shè)函數(shù)f(x)=log2(2x+1)的反函數(shù)為y=f-1(x),若關(guān)于x的方程f-1(x)=m+f(x)在[1,2]上有解,則實數(shù)m的取值范圍是
[log2
1
3
,log2
3
5
]
[log2
1
3
log2
3
5
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•楊浦區(qū)一模)若直線l:ax+by=1與圓C:x2+y2=1有兩個不同的交點,則點P(a,b)與圓C的位置關(guān)系是
P在圓外
P在圓外

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•楊浦區(qū)一模)若函數(shù)y=f(x),如果存在給定的實數(shù)對(a,b),使得f(a+x)•f(a-x)=b恒成立,則稱y=f(x)為“Ω函數(shù)”.
(1)判斷下列函數(shù),是否為“Ω函數(shù)”,并說明理由;
①f(x)=x3         ②f(x)=2x
(2)已知函數(shù)f(x)=tanx是一個“Ω函數(shù)”,求出所有的有序?qū)崝?shù)對(a,b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•楊浦區(qū)一模)計算:
lim
n→∞
(1-
2n
n+3
)
=
-1
-1

查看答案和解析>>

同步練習(xí)冊答案