函數(shù)為常數(shù))是奇函數(shù)。(1)求實(shí)數(shù)m的值和函數(shù) 的圖象與橫軸的交點(diǎn)坐標(biāo)。(2)設(shè),求的最大值F(t); (3)求F(t)的最小值。

解:(1)由于為奇函數(shù),易得m=0

設(shè)

①當(dāng)3t<0時(shí),上述方程只有一個(gè)實(shí)數(shù)根x=0,所以與x軸的交點(diǎn)坐標(biāo)為(0,0)

②當(dāng)3t=0時(shí),上述方程有三個(gè)相等實(shí)數(shù)根x=0,所以與x軸的交點(diǎn)坐標(biāo)為(0,0)

③當(dāng)3t>0時(shí),上述方程的解為x1=0,x2,x 3=,所以與橫軸的交點(diǎn)坐標(biāo)分別為(0,0),(,0),(-,0)

(2)顯然是偶函數(shù),

所以只要求出的最大值即可

為增函數(shù),  ∴

②t>0時(shí),則在[0,1]上

(i)時(shí),則在[0,1]上為減函數(shù)

,

(ii)0<t<1時(shí),則在[0,1]上

x

0

(0,

,1)

1

0

+

0

極小值 -2t

1-3t

所以可以畫出的草圖如下,并且由圖可知:

(10)當(dāng)

(20)當(dāng)

綜上所述:

(3)顯然上為減函數(shù),

上為增函數(shù),

即在為增函數(shù)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-3tx+m(x∈R,m和t為常數(shù))是奇函數(shù).
(1)求實(shí)數(shù)m的值和函數(shù)f(x)的圖象與橫軸的交點(diǎn)坐標(biāo);
(2)設(shè)g(x)=|f(x)|(x∈[-1,1]),求g(x)的最大值F(t);
(3)求F(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-3tx+m(x∈R,m和t為常數(shù))是奇函數(shù).
(Ⅰ)求實(shí)數(shù)m的值和函數(shù)f(x)的圖象與x軸的交點(diǎn)坐標(biāo);
(Ⅱ)求f(x)(x∈[0,1])的最大值F(t).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=a-
2
2x+1
(a為常數(shù))是奇函數(shù),則a的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃浦區(qū)一模)已知函數(shù)f(x)=lg(
2
1-x
+a
)(a為常數(shù))是奇函數(shù),則f(x)的反函數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案