【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且 =
(Ⅰ)求角B的大。
(Ⅱ)點(diǎn)D滿(mǎn)足 =2 ,且線段AD=3,求2a+c的最大值.

【答案】解:(Ⅰ)△ABC中, = ,

= ,

∴ac﹣c2=a2﹣b2,

∴ac=a2+c2﹣b2

∴cosB= = = ;

又B∈(0,π),

∴B= ;

(Ⅱ)如圖所示,

點(diǎn)D滿(mǎn)足 =2 ,∴BC=CD;

又線段AD=3,

∴AD2=c2+4a2﹣2c2acos =c2+4a2﹣2ac=9,

∴c2+4a2=9+2ac;

又c2+4a2≥2c2a,

∴4ac≤9+2ac,

∴2ac≤9;

∴(2a+c)2=4a2+4ac+c2=9+6ac≤9+3×9=36,

∴2a+c≤6,

即2a+c的最大值為6


【解析】(Ⅰ)由正弦定理和余弦定理,即可求出cosB以及B的值;(Ⅱ)結(jié)合題意畫(huà)出圖形,根據(jù)圖形利用余弦定理和基本不等式,即可求出2a+c的值.
【考點(diǎn)精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握正弦定理:;余弦定理:;;才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}的各項(xiàng)均為正數(shù),且an+1=an+ ﹣1(n∈N*),{an}的前n項(xiàng)和是Sn
(Ⅰ)若{an}是遞增數(shù)列,求a1的取值范圍;
(Ⅱ)若a1>2,且對(duì)任意n∈N* , 都有Sn≥na1 (n﹣1),證明:Sn<2n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A、B、C所對(duì)的邊為a、b、c,且滿(mǎn)足cos2A﹣cos2B=2cos(A﹣ )cos(A+ ).
(Ⅰ)求角B的值;
(Ⅱ)若b= ≤a,求2a﹣c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l的方程為y=x+2,點(diǎn)P是拋物線y2=4x上到直線l距離最小的點(diǎn),點(diǎn)A是拋物線上異于點(diǎn)P的點(diǎn),直線AP與直線l交于點(diǎn)Q,過(guò)點(diǎn)Q與x軸平行的直線與拋物線y2=4x交于點(diǎn)B.

(Ⅰ)求點(diǎn)P的坐標(biāo);
(Ⅱ)證明直線AB恒過(guò)定點(diǎn),并求這個(gè)定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為 (其中t為參數(shù)),現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=4cosθ.
(Ⅰ)寫(xiě)出直線l和曲線C的普通方程;
(Ⅱ)已知點(diǎn)P為曲線C上的動(dòng)點(diǎn),求P到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}中,a2=6,a3+a6=27.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{an}的前n項(xiàng)和為Sn , 且Tn= ,若對(duì)于一切正整數(shù)n,總有Tn≤m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ均為正的常數(shù))的最小正周期為π,當(dāng)x= 時(shí),函數(shù)f(x)取得最小值,則下列結(jié)論正確的是(
A.f(2)<f(﹣2)<f(0)
B.f(0)<f(2)<f(﹣2)
C.f(﹣2)<f(0)<f(2)
D.f(2)<f(0)<f(﹣2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l的參數(shù)方程為 (0≤α<π,t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并說(shuō)明曲線C的形狀;
(Ⅱ)若直線l經(jīng)過(guò)點(diǎn)(1,0),求直線l被曲線C截得的線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C的方程為(x﹣3)2+(y﹣4)2=16,過(guò)直線l:6x+8y﹣5a=0(a>0)上的任意一點(diǎn)作圓的切線,若切線長(zhǎng)的最小值為 ,則直線l在y軸上的截距為

查看答案和解析>>

同步練習(xí)冊(cè)答案