已知點F是拋物線C:y2=4x的焦點,過點F且斜率為數(shù)學公式的直線交拋物線C于A、B兩點,設(shè)|FA|>|FB|,則數(shù)學公式的值等于


  1. A.
    2
  2. B.
    3
  3. C.
    4
  4. D.
    5
B
分析:由點F是拋物線C:y2=4x的焦點,知F(1,0),所以過點F且斜率為的直線方程為:y=(x-1),聯(lián)立方程組,得3(x-1)2=4x,解得x1=3,x2=,由|FA|>|FB|,能求出
解答:∵點F是拋物線C:y2=4x的焦點,∴F(1,0),
∴過點F且斜率為的直線方程為:y=(x-1),
聯(lián)立方程組,得3(x-1)2=4x,
解得x1=3,x2=
∵|FA|>|FB|,
===3.
故選B.
點評:考查拋物線標準方程,簡單幾何性質(zhì),直線與拋物線的位置關(guān)系等基礎(chǔ)知識.考查運算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知點F是拋物線C:y2=x的焦點,S是拋物線C在第一象限內(nèi)的點,且|SF|=
5
4

(Ⅰ)求點S的坐標;
(Ⅱ)以S為圓心的動圓與x軸分別交于兩點A、B,延長SA、SB分別交拋物線C于M、N兩點;
①判斷直線MN的斜率是否為定值,并說明理由;
②延長NM交x軸于點E,若|EM|=
1
3
|NE|,求cos∠MSN的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點F是拋物線C:y2=4x的焦點,過點F且斜率為
3
的直線交拋物線C于A、B兩點,設(shè)|FA|>|FB|,則
|FA|
|FB|
的值等于(  )

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年遼寧省高三上學期期中考試理科數(shù)學試卷(解析版) 題型:解答題

已知點F是拋物線C:的焦點,S是拋物線C在第一象限內(nèi)的點,且|SF|=.

(Ⅰ)求點S的坐標;

(Ⅱ)以S為圓心的動圓與軸分別交于兩點A、B,延長SA、SB分別交拋物線C于M、N兩點;

①判斷直線MN的斜率是否為定值,并說明理由;

②延長NM交軸于點E,若|EM|=|NE|,求cos∠MSN的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河北省高三第三次模擬考試理科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分12分)已知點F是拋物線C:的焦點,S是拋物線C在第一象限內(nèi)的點,且|SF|=

(Ⅰ)求點S的坐標;

(Ⅱ)以S為圓心的動圓與軸分別交于兩點A、B,延長SA、SB分別交拋物線C于M、N兩點;

①判斷直線MN的斜率是否為定值,并說明理由;

②延長NM交軸于點E,若|EM|=|NE|,求cos∠MSN的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年四川省高三2月月考數(shù)學理卷 題型:解答題

(本小題滿分12分)

已知點F是拋物線C:的焦點,S是拋物線C在第一象限內(nèi)的點,且|SF|=。

(1)求點S的坐標;

(2)以S為圓心的動圓與軸分別交于兩點A、B,延長SA、SB分別交拋物線C于M、N兩點;

     ①判斷直線MN的斜率是否為定值,并說明理由;

     ②延長NM交軸于點E,若|EM|=|NE|,求cos∠MSN的值。

 

 

查看答案和解析>>

同步練習冊答案