分析 (1)根據(jù)線面垂直的判定定理即可證明AE⊥平面BCE;
(2)建立空間坐標(biāo)系,求出平面的法向量,利用向量法建立方程關(guān)系即可得到結(jié)論.
解答 (1)證明:在直角梯形ABCD中,作DM⊥BC于M,連接AE,
則CM=2-1=1,CD=DE+CE=1+2=3,
則DM=AB=$\sqrt{9-1}$=$\sqrt{8}$=2$\sqrt{2}$,
cosC=$\frac{CM}{CD}$=$\frac{1}{3}$,則BE=$\sqrt{C{E}^{2}+C{B}^{2}-2CE•CBcosC}$=$\sqrt{4+4-2×2×2×\frac{1}{3}}$=$\sqrt{\frac{16}{3}}$=$\frac{4\sqrt{3}}{3}$,
sin∠CDM=$\frac{1}{3}$,
則AE=$\sqrt{A{D}^{2}+D{E}^{2}-2AD•DEcos∠ADE}$
=$\sqrt{1+1-2×1×1×\frac{1}{3}}$=$\sqrt{\frac{4}{3}}$=$\frac{2\sqrt{6}}{3}$,(2分)
∴AE2+BE2=AB2,
故AE⊥BE,且折疊后AE與BE位置關(guān)系不變…(4分)
又∵面BCE⊥面ABED,且面BCE∩面ABED=BE,
∴AE⊥面BCE…(6分)
(2)解:∵在△BCE中,BC=CE=2,F(xiàn)為BE的中點(diǎn)
∴CF⊥BE
又∵面BCE⊥面ABED,且面BCE∩面ABED=BE,
∴CF⊥面ABED,
故可以F為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系
則A($\frac{2\sqrt{6}}{3}$,$-\frac{2\sqrt{3}}{3}$,0),C(0,0,$\frac{2\sqrt{6}}{3}$),E(0,$-\frac{2\sqrt{3}}{3}$,0),
易求得面ACE的法向量為$\overrightarrow{m}$=(0,$-\sqrt{2}$,1)…(8分)
假設(shè)在AB上存在一點(diǎn)P使平面ACE與平面PCF,
所成角的余弦值為$\frac{2}{3}$,且$\overrightarrow{AP}=λ\overrightarrow{AB}$,(λ∈R),
∵B(0,$\frac{2\sqrt{3}}{3}$,0),
∴$\overrightarrow{AB}$=(-$\frac{2\sqrt{6}}{3}$,$\frac{4\sqrt{3}}{3}$,0),
故$\overrightarrow{AP}$=(-$\frac{2\sqrt{6}}{3}$λ,$\frac{4\sqrt{3}}{3}$λ,0),
又$\overrightarrow{CA}$=($\frac{2\sqrt{6}}{3}$,$-\frac{2\sqrt{3}}{3}$,-$\frac{2\sqrt{6}}{3}$),
∴$\overrightarrow{CP}=\overrightarrow{CA}+\overrightarrow{AP}$=($\frac{2\sqrt{6}}{3}$(1-λ),$\frac{2\sqrt{3}}{3}$(2λ-1),-$\frac{2\sqrt{6}}{3}$),
又 $\overrightarrow{FC}$=(0,0,$\frac{2\sqrt{6}}{3}$),
設(shè)面PCF的法向量為$\overrightarrow{n}$=(x,y,z),
∴$\left\{\begin{array}{l}{\overrightarrow{FC}•\overrightarrow{n}=0}\\{\overrightarrow{CP}•\overrightarrow{n}=0}\end{array}\right.$,
即$\left\{\begin{array}{l}{-\frac{2\sqrt{6}}{3}z=0}\\{\frac{2\sqrt{6}}{3}(1-λ)x-\frac{2\sqrt{3}}{3}(2λ-1)y-\frac{2\sqrt{6}}{3}z=0}\end{array}\right.$,
令x=2λ-1得$\overrightarrow{n}$=(2λ-1,$\sqrt{2}$(λ-1),0)…(10分)
∴|cos<$\overrightarrow{m},\overrightarrow{n}$>|=|$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$|=$\frac{|2(λ-1)|}{\sqrt{3}•\sqrt{(2λ-1)^{2}+2(λ-1)^{2}}}$=$\frac{2}{3}$,
解得$λ=\frac{2}{3}$ …(12分)
因此存在點(diǎn)P且P為線段AB上靠近點(diǎn)B的三等分點(diǎn)時(shí)使得平面ACE與平面PCF所成角的余弦值為$\frac{2}{3}$.…(13分)
點(diǎn)評 本題主要考查空間線面垂直的判定以及空間二面角的計(jì)算和應(yīng)用,建立空間坐標(biāo)系利用向量法是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2+(y+1)2=1 | B. | x2+(y+$\sqrt{3}$)2=3 | C. | x2+(y+$\frac{\sqrt{3}}{2}$)2=$\frac{3}{4}$ | D. | x2+(y+2)2=4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 奇函數(shù) | B. | 偶函數(shù) | ||
C. | 既是奇函數(shù),又是偶函數(shù) | D. | 既非奇函數(shù),又非偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com