已知函數(shù)f(x)=x3+ax2-2x+5,
(1)若函數(shù)f(x)在(-數(shù)學(xué)公式,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,求實(shí)數(shù)a的值;
(2)是否存在實(shí)數(shù)a,使得f(x)在(-2,數(shù)學(xué)公式)上單調(diào)遞減,若存在,試求a的取值范圍;若不存在,請說明理由;
(3)若a=-數(shù)學(xué)公式,當(dāng)x∈(-1,2)時(shí)不等式f(x)<m有解,求實(shí)數(shù)m的取值范圍.

解:(1)求導(dǎo)函數(shù)可得f′(x)=3x2+2ax-2,
∵函數(shù)f(x)在(-,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,
∴x=1是方程f′(x)=0的根,解得a=- …..(3分)
(2)由題意得:f′(x)=3x2+2ax-2≤0在(-2,)上恒成立,
,∴,∴ …..(7分)
(3)當(dāng)a=-時(shí),f(x)=x3-x2-2x+5,,
由f′(x)=0得x=-或1
列表:
x-1(-1,--(-,1)1(1,2)2
f′(x)+0-0+
f(x)7
∴x∈(-1,2)時(shí),f(x)的最小值為,此時(shí)x=1
欲使不等式f(x)<m有解,只需m≥[f(x)]min=
∴實(shí)數(shù)m的取值范圍為[,+∞). …(12分)
分析:(1)求導(dǎo)函數(shù),根據(jù)函數(shù)f(x)在(-,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,可得x=1是方程f′(x)=0的根,從而可求實(shí)數(shù)a的值;
(2)由題意得:f′(x)=3x2+2ax-2≤0在(-2,)上恒成立,由此可實(shí)數(shù)a的取值范圍;
(3)求導(dǎo)函數(shù),求導(dǎo)函數(shù)x∈(-1,2)時(shí),f(x)的最小值,欲使不等式f(x)<m有解,只需m≥[f(x)]min,從而可求實(shí)數(shù)m的取值范圍.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查恒成立問題,考查函數(shù)的最值,區(qū)分恒成立與有解是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案