5.若$m=\sqrt{3}+\sqrt{5}$,$n=\sqrt{2}+\sqrt{6}$,則下列結(jié)論正確的是( 。
A.m<nB.n<m
C.n=mD.不能確定m,n的大小

分析 分別求出m2=8+2$\sqrt{15}$,n2=8+2$\sqrt{12}$,易知m2>n2,即可得到m>n.

解答 解:∵$m=\sqrt{3}+\sqrt{5}$,$n=\sqrt{2}+\sqrt{6}$,
∴m2=8+2$\sqrt{15}$,n2=8+2$\sqrt{12}$,
∴m2>n2,
∴m>n,
故選:B.

點評 本題考查了不等式的大小比較的方法,采用平方法,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.如圖,正方體ABCD-A1B1C1D1的棱長為1,P對角線BD1的三等分點,P到直線CC1的距離為$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,在等腰△ABC中,∠BAC=120°,AB=$\sqrt{3}$,點M在線段BC上.
(1)若AM=1,求BM的長;
(2)若點N在線段MC上,且∠MAN=30°,問:當∠BAM取何值時,△AMN的面積最。坎⑶蟪雒娣e的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)$f(x)=4{sin^2}(\frac{π}{4}+x)-2\sqrt{3}cos2x-1$,且$\frac{π}{4}≤x≤\frac{π}{2}$.
(1)求f(x)的最大值及最小值;
(2)若條件$p:f(x)=4{sin^2}(\frac{π}{4}+x)-2\sqrt{3}cos2x-1,\frac{π}{4}≤x≤\frac{π}{2}$;條件q:|f(x)-m|<2,且p是q的充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知圓O:x2+y2=1,點M(x0,y0)是直線上x-y+2=0一點,若圓O上存在一點N,使得∠NMO=$\frac{π}{6}$,則x0的取值范圍是(  )
A.[-2,0]B.(0,3)C.[2,4]D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.(文)若正數(shù)x,y滿足x+y+xy=8,則xy的最大值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,b=2asinB,且b>a.
(1)求A;
(2)若$a=2,c=2\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.不論m如何變化,直線(m+2)x-(2m-1)y-(3m-4)=0恒過定點( 。
A.(1,2)B.(-1,-2)C.(2,1)D.(-2,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知Sn是數(shù)列{an}的前n項和,且Sn=2an-2n對n∈N*成立,
(1)證明數(shù)列{an+2}是等比數(shù)列,并求出數(shù)列{an}的通項公式;
(2)求數(shù)列{nan}的前n項和Tn

查看答案和解析>>

同步練習冊答案