【題目】某班級(jí)共派出個(gè)男生和個(gè)女生參加學(xué)校運(yùn)動(dòng)會(huì)的入場(chǎng)儀式,其中男生倪某為領(lǐng)隊(duì).入場(chǎng)時(shí),領(lǐng)隊(duì)男生倪某必須排第一個(gè),然后女生整體在男生的前面,排成一路縱隊(duì)入場(chǎng),共有種排法;入場(chǎng)后,又需從男生(含男生倪某)和女生中各選一名代表到主席臺(tái)服務(wù),共有種選法.(1)試求; (2)判斷的大。),并用數(shù)學(xué)歸納法證明.

【答案】(1),;(2)見解析.

【解析】分析:(1)根據(jù)隊(duì)里男生甲必須排第一個(gè),然后女生整體排在男生的前面,排成一路縱隊(duì)入場(chǎng),可得,根據(jù)從男生和女生中各選一名代表到主席臺(tái)服務(wù),可得;

(2)根據(jù),猜想,再用數(shù)學(xué)歸納法證明,第二步的證明利用分析法證明.

詳解:(1),.

(2)因?yàn)?/span>,所以,,

,由此猜想:當(dāng)時(shí),都有,即.

下面用數(shù)學(xué)歸納法證明).

時(shí),該不等式顯然成立.

②假設(shè)當(dāng)時(shí),不等式成立,即,.

則當(dāng)時(shí),,

要證當(dāng)時(shí)不等式成立.只要證:

只要證:..

,因?yàn)?/span>,所以上單調(diào)遞減,

從而,而,所以成立.

則當(dāng)時(shí),不等式也成立.

綜合①、②得原不等式對(duì)任意的均成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知1+ = . (I)求A;
(Ⅱ)若BC邊上的中線AM=2 ,高線AH= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x﹣2)2+(y﹣3)2=1交于點(diǎn)M、N兩點(diǎn).
(1)求k的取值范圍;
(2)若 =12,其中O為坐標(biāo)原點(diǎn),求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,PAAB,PABCABBC,PAABBC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).

(1)求證:PABD;

(2)求證:平面BDE平面PAC;

(3)當(dāng)PA平面BDE時(shí),求三棱錐EBCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體中,點(diǎn)是棱的中點(diǎn),點(diǎn) 在棱上,且為實(shí)數(shù)).

(1)求二面角的余弦值;

(2)當(dāng)時(shí),求直線與平面所成角的正弦值的大小;

(3)求證:直線與直線不可能垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= sin2x+ sin2x.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f( )= ,△ABC的面積為3 ,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服務(wù)電話,打進(jìn)的電話響第1聲時(shí)被接的概率是0.1;響第2聲時(shí)被接的概率是0.2;響第3聲時(shí)被接的概率是0.3;響第4聲時(shí)被接的概率是0.35.

(1)打進(jìn)的電話在響5聲之前被接的概率是多少?

(2)打進(jìn)的電話響4聲而不被接的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班從6名干部中(其中男生4人,女生2人)選3人參加學(xué)校的義務(wù)勞動(dòng).
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列及Eξ;
(2)求男生甲或女生乙被選中的概率;
(3)在男生甲被選中的情況下,求女生乙也被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))在處取得極值.

(1)求的單調(diào)區(qū)間;

(2)討論的零點(diǎn)個(gè)數(shù),并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案