6.已知函數(shù)f(x)=x2+(2a-1)x+6+a2有兩個(gè)零點(diǎn)m,n,且m>2,n>2,求實(shí)數(shù)a的取值范圍.

分析 函數(shù)的零點(diǎn)就是方程的根,根據(jù)方程根的分布與系數(shù)的關(guān)系,得到不等式組,解得即可.

解答 解:函數(shù)f(x)=x2+(2a-1)x+6+a2有兩個(gè)零點(diǎn)m,n,且m>2,n>2,等價(jià)于方程的兩個(gè)根都大于2,
即$\left\{\begin{array}{l}{(2a-1)^{2}-4(6+{a}^{2})≥0}\\{-\frac{2a-1}{2}>2}\\{4+2(2a-1)+6+{a}^{2}>0}\end{array}\right.$,
解得a≤-5.75,
故實(shí)數(shù)m的取值范圍為(-∞,-5.75].

點(diǎn)評(píng) 本題主要考查一元二次方程根的分布與系數(shù)的關(guān)系,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列四個(gè)命題,其中正確命題的個(gè)數(shù)( 。
①若a>|b|,則a2>b2
②若a>b,c>d,則a-c>b-d 
③若a>b,c>d,則ac>bd 
④若a>b>o,則$\frac{c}{a}$>$\frac{c}$.
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2a,E是PB的中點(diǎn),F(xiàn)是AD的中點(diǎn),求證:EF⊥平面PCB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知sinα=2cosα,求下列各式的值.
(1)sin2α一2cos2α
(2)sin2α+sinαcosα+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知p:x2-2(a-1)x+a(a一2)≥0,q:2x2-3x一2≥0,若p是q的必要不充分條件.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列命題是假命題的是( 。
A.若$\overrightarrow{a}•\overrightarrow$=0($\overrightarrow{a}$≠0,$\overrightarrow$≠0),則$\overrightarrow{a}⊥\overrightarrow$B.若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$
C.若ac2>bc2,則a>bD.若α=60°,則cosα=$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若x∈(0,$\frac{π}{2}$),sinxcosx=$\frac{1}{2}$,則$\frac{1}{1+sinx}$+$\frac{1}{1+cosx}$=4-2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.桌子上有兩個(gè)形狀完全相同的盒子,第一個(gè)盒子里有2個(gè)白球和4個(gè)紅球,第二個(gè)盒子里有2個(gè)黑球和1個(gè)紅球.每次操作都是先在兩個(gè)盒子中隨機(jī)地選出一個(gè)盒子,再在這個(gè)盒子中隨機(jī)地選出一個(gè)球.
(1)求操作一次之后無(wú)法判斷所選的盒子是第幾個(gè)盒子的概率;
(2)如果每次操作之后都將選出的球放回到原來(lái)盒子中,那么重復(fù)操作4次后,求其中紅球個(gè)數(shù)的分布列和期望;
(3)如果操作一次取出的是紅色球,求這個(gè)球來(lái)自于第一個(gè)盒子的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)y=f(x)在區(qū)間(0,3)上為增函數(shù),y=g(x)在區(qū)間(2,5)上為減函數(shù),則函數(shù)y=f(g(x))在區(qū)間(2,3)上為( 。
A.增函數(shù)B.減函數(shù)C.先增后減D.單調(diào)性不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案