((本小題滿分12分)
已知函數(shù)是上的增函數(shù),,.
(Ⅰ)若,求證:;
(Ⅱ)判斷(Ⅰ)中命題的逆命題是否成立,并用反證法證明你的結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義:已知函數(shù)在[m,n](m<n)上的最小值為t,若t≤m恒成立,則稱函數(shù)在[m,n] (m<n)上具有“DK”性質(zhì).
(1)判斷函數(shù)在[1,2]上是否具有“DK”性質(zhì),說明理由;
(2)若在[a,a+1]上具有“DK”性質(zhì),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)的定義域?yàn)?0,1](為實(shí)數(shù)).
⑴當(dāng)時(shí),求函數(shù)的值域;
⑵若函數(shù)在定義域上是減函數(shù),求的取值范圍;
⑶求函數(shù)在x∈(0,1]上的最大值及最小值,并求出函數(shù)取最值時(shí)的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù).
(1)判斷其奇偶性;
(2)指出該函數(shù)在區(qū)間(0,1)上的單調(diào)性并證明;
(3)利用(1)、(2)的結(jié)論,指出該函數(shù)在(-1,0)上的增減性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù),當(dāng)時(shí),函數(shù)在x=2處取得最小值1。
(1)求函數(shù)的解析式;
(2)設(shè)k>0,解關(guān)于x的不等式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù).
(1)當(dāng)時(shí),討論的單調(diào)性;
(2)設(shè)當(dāng)時(shí),若對(duì)任意,存在,使恒成立,求實(shí)數(shù)取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)
設(shè)實(shí)數(shù), 設(shè)函數(shù)的最大值為。
(1)設(shè),求的取值范圍,并把表示為的函數(shù);
(2)求
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com