分析 ①根據(jù)條件先求出函數(shù)的解析式,根據(jù)條件判斷f(x1)為函數(shù)的最小值,f(x2)為函數(shù)的最大值,即可.
②根據(jù)函數(shù)的對稱性進行判斷.
③根據(jù)函數(shù)的對稱性以及對稱軸之間的關(guān)系進行判斷.
④求出角的范圍,結(jié)合三角函數(shù)的單調(diào)性進行判斷.
解答 解:∵在($\frac{π}{6}$,$\frac{π}{2}$)上既無最大值,也無最小值,
∴($\frac{π}{6}$,$\frac{π}{2}$)是函數(shù)的一個單調(diào)區(qū)間,區(qū)間長度為$\frac{π}{2}$-$\frac{π}{6}$=$\frac{π}{3}$,
即函數(shù)的周期T≥2×$\frac{π}{3}$=$\frac{2π}{3}$,即$\frac{2π}{ω}$≥$\frac{2π}{3}$,則0<ω≤3.
∵f(0)=f($\frac{π}{6}$),
∴x=$\frac{0+\frac{π}{6}}{2}$=$\frac{π}{12}$是函數(shù)的一條對稱軸,
∵-f($\frac{π}{2}$)=f($\frac{π}{6}$),
∴x=$\frac{\frac{π}{2}+\frac{π}{6}}{2}$=$\frac{π}{3}$,即($\frac{π}{3}$,0)是函數(shù)的一個對稱中心,
則$\left\{\begin{array}{l}{\frac{π}{12}ω+φ=\frac{π}{2}}\\{\frac{π}{3}ω+φ=π}\end{array}\right.$,解得ω=2,φ=$\frac{π}{3}$,
即f(x)=Asin(2x+$\frac{π}{3}$),函數(shù)的周期T=π,
①若f(x1)≤f(x2)對任意實數(shù)x恒成立,
則f(x1)為函數(shù)的最小值,f(x2)為函數(shù)的最大值,
則|x2-x1|=$\frac{T}{2}$•k=k•$\frac{π}{2}$,即x2-x1必定是$\frac{π}{2}$的整數(shù)倍正確,故①正確,
②當x=$\frac{4π}{3}$時,y=Asin(2×$\frac{4π}{3}$+$\frac{π}{3}$)=Asin($\frac{8π}{3}$+$\frac{π}{3}$)=Asin3π=0,
則y=f(x)的圖象關(guān)于($\frac{4π}{3}$,0)對稱;故②正確,
③對于函數(shù)y=|f(x)|(x∈R)的圖象,
則當x=-$\frac{5π}{12}$時,y=|Asin(2×(-$\frac{5π}{12}$)+$\frac{π}{3}$)=|Asin($\frac{π}{3}$-$\frac{5π}{6}$)|=|Asin$\frac{π}{2}$|=A,為最值,則-$\frac{5π}{12}$一定是一條對稱軸,
且相鄰兩條對稱軸之間的距離是$\frac{T}{4}$=$\frac{π}{4}$;故③錯誤,
④當x∈[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z),
則2x∈[2kπ+$\frac{π}{6}$,2kπ+$\frac{7π}{6}$](k∈Z),
2x+$\frac{π}{3}$∈[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$](k∈Z),
則此時函數(shù)單調(diào)遞減,即函數(shù)f(x)在每一個[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)上具有嚴格的單調(diào)性正確,故④正確.
故答案為:①②④
點評 本題主要考查與三角函數(shù)有關(guān)的命題的真假判斷,根據(jù)條件求出函數(shù)的解析式是解決本題的關(guān)鍵.綜合性較強,運算量較大,
科目:高中數(shù)學 來源: 題型:選擇題
A. | 相交 | B. | 平行 | C. | 在平面α內(nèi) | D. | 平行或在平面α內(nèi) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,1] | B. | (-1,1) | C. | (-1,0)∪(0,1) | D. | [-1,0)∪(0,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com