【題目】已知函數(shù)f(x)=ln(ax+1)+ ﹣x2﹣ax(a∈R)
(1)若y=f(x)在[4,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(2)當a≥ 時,設g(x)=ln[x2(ax+1)]+ ﹣3ax﹣f(x)(x>0)的兩個極值點x1 , x2(x1<x2)恰為φ(x)=lnx﹣cx2﹣bx的零點,求y=(x1﹣x2)φ′( )的最小值.

【答案】
(1)解:由題意f′(x)= +x2﹣2x﹣a≥0在[4,+∞)上恒成立,

整理得ax2+(1﹣2a)x﹣a2﹣2≥0在[4,+∞)上恒成立

設h(x)=ax2+(1﹣2a)x﹣a2﹣2,顯然a>0其對稱軸為x=1﹣ <1

∴h(x)在[4,+∞)單調遞增,∴只要h(4)=16a+4(1﹣2a)﹣a2﹣2≥0,

∴0<a≤4+3


(2)解:g(x)=2lnx﹣2ax+x2,g′(x)=

由題意 ,∴ ,解得0< ,

φ′(x)= ﹣2cx﹣b,φ(x1)=lnx1﹣cx12﹣bx1,φ(x2)=lnx2﹣cx22﹣bx2,

兩式相減得ln ﹣c(x1﹣x2)(x1+x2)﹣b(x1﹣x2)=0,

∴y=(x1﹣x2)φ′( )= ﹣lnt(0<t≤ ),

∴y′= <0.

∴y=(x1﹣x2)φ′( )在(0, ]遞減,ymin=ln2﹣

∴y=(x1﹣x2)φ′( )的最小值為ln2﹣


【解析】(1)由題意f′(x)= +x2﹣2x﹣a≥0在[4,+∞)上恒成立,整理得ax2+(1﹣2a)x﹣a2﹣2≥0在[4,+∞)上恒成立,設h(x)=ax2+(1﹣2a)x﹣a2﹣2,只要h(4)=16a+4(1﹣2a)﹣a2﹣2≥0,即可求實數(shù)a的取值范圍;(2)先確定0< ,再利用y=(x1﹣x2)φ′( )= ﹣lnt(0<t≤ ),即可求y=(x1﹣x2)φ′( )的最小值.
【考點精析】通過靈活運用利用導數(shù)研究函數(shù)的單調性和函數(shù)的極值與導數(shù),掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在英國的某一娛樂節(jié)目中,有一種過關游戲,規(guī)則如下:轉動圖中轉盤(一個圓盤四等分,在每塊區(qū)域內(nèi)分別標有數(shù)字1,2,3,4),由轉盤停止時指針所指數(shù)字決定是否過關.在闖關時,轉次,當次轉得數(shù)字之和大于時,算闖關成功,并繼續(xù)闖關,否則停止闖關,闖過第一關能獲得10歐元,之后每多闖一關,獎金翻倍,假設每個參與者都會持續(xù)闖關到不能過關為止,并且轉盤每次轉出結果相互獨立.

(1)求某人參加一次游戲,恰好獲得10歐元的概率;

(2)某人參加一次游戲,獲得獎金歐元,求的概率分布和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p:x∈[1,2],x2≥a;命題q:x∈R,x2+2ax+2﹣a=0,若命題p∧q是真命題,則實數(shù)a的取值范圍是(
A.a≤﹣2或a=1
B.a≤﹣2或1≤a≤2
C.a≥1
D.﹣2≤a≤1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)為奇函數(shù),且當x>0時,f(x)=x2+ ,則f(﹣1)=(
A.2
B.1
C.0
D.﹣2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)(x≠0)對于任意的x,y∈R且x,y≠0滿足f(xy)=f(x)+f(y).
(1)求f(1),f(﹣1)的值;
(2)求證:y=f(x)為偶函數(shù);
(3)若y=f(x)在(0,+∞)上是增函數(shù),解不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)是偶函數(shù)的是(
A.y=1﹣lg|x|
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的定義域和值域;
(2)若f(x)≤1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設命題:實數(shù)滿足,其中;命題:實數(shù)滿足.

(1)若,且為真,求實數(shù)的取值范圍;

(2)若的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x||x+1|<1},B={x|y= ,y∈R},則A∩RB=(
A.(﹣2,1)
B.(﹣2,﹣1]
C.(﹣1,0)
D.[﹣1,0)

查看答案和解析>>

同步練習冊答案