【題目】廣東省2021年高考將實(shí)行模式,其最大特點(diǎn)就是取消文理科,除語文、數(shù)學(xué)、外語之外,從物理、歷史這2科中自由選擇一門科目;化學(xué)、生物、政治、地理這4科中自由選擇兩門科目作為選考科目.某研究機(jī)構(gòu)為了了解學(xué)生對(duì)全理(選擇物理、化學(xué)、生物)的選擇是否與性別有關(guān),從某學(xué)校高一年級(jí)的學(xué)生中隨機(jī)抽取男生、女生個(gè)25人進(jìn)行模擬選科.經(jīng)統(tǒng)計(jì),選擇全理的人數(shù)比不選全理的人數(shù)多10.

1)請(qǐng)完成下面的列聯(lián)表:

選擇全理

不選擇全理

合計(jì)

男生

5

女生

合計(jì)

2)估計(jì)有多大把握認(rèn)為選擇全理與性別有關(guān),并說明理由;

3)現(xiàn)從這50名學(xué)生中已經(jīng)選取了男生3名,女生2名進(jìn)行座談,從這5人中抽取2名代表作問卷調(diào)查,求至少抽到一名女生的概率.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.076

3.841

5.024

6.635

7.879

10.828

:,其中.

【答案】1)列聯(lián)表見解析;(2的把握認(rèn)為選擇全理與性別有關(guān),理由見解析;(3.

【解析】

1)根據(jù)題意,結(jié)合題設(shè)中的數(shù)據(jù),即可得到的列聯(lián)表;

2)利用公式,求得的值,即可求解;

3)設(shè)3名男生分別為12,3,兩名女生分別為4,5.列出所有基本事件的個(gè)數(shù),利用古典概型的概率計(jì)算公式,即可求解.

1)依題意可得的列聯(lián)表:

選擇全理

不選擇全理

合計(jì)

男生

20

5

25

女生

10

15

25

合計(jì)

30

20

50

2)由(1)中的數(shù)列,可得,

所以的把握認(rèn)為選擇全理與性別有關(guān).

3)設(shè)3名男生分別為1,2,3,兩名女生分別為4,5

5名學(xué)生中抽取2名所有的可能為:10種,

其中不包含女生的基本事件有,共3種,

故所求概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)打算處理一批產(chǎn)品,這些產(chǎn)品每箱100件,以箱為單位銷售.已知這批產(chǎn)品中每箱出現(xiàn)的廢品率只有或者兩種可能,兩種可能對(duì)應(yīng)的概率均為0.5.假設(shè)該產(chǎn)品正品每件市場(chǎng)價(jià)格為100元,廢品不值錢.現(xiàn)處理價(jià)格為每箱8400元,遇到廢品不予更換.以一箱產(chǎn)品中正品的價(jià)格期望值作為決策依據(jù).

1)在不開箱檢驗(yàn)的情況下,判斷是否可以購(gòu)買;

2)現(xiàn)允許開箱,有放回地隨機(jī)從一箱中抽取2件產(chǎn)品進(jìn)行檢驗(yàn).

①若此箱出現(xiàn)的廢品率為,記抽到的廢品數(shù)為,求的分布列和數(shù)學(xué)期望;

②若已發(fā)現(xiàn)在抽取檢驗(yàn)的2件產(chǎn)品中,其中恰有一件是廢品,判斷是否可以購(gòu)買.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy下,曲線C1的參數(shù)方程為 為參數(shù)),曲線C1在變換T的作用下變成曲線C2

1)求曲線C2的普通方程;

2)若m>1,求曲線C2與曲線C3y=m|x|-m的公共點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),右焦點(diǎn)到直線的距離為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)定義,兩點(diǎn)所在直線的斜率,若四邊形為橢圓的內(nèi)接四邊形,且,相交于原點(diǎn),且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),右焦點(diǎn)到直線的距離為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)定義,兩點(diǎn)所在直線的斜率,若四邊形為橢圓的內(nèi)接四邊形,且,相交于原點(diǎn),且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列 滿足: , 或1().對(duì)任意,都存在,使得.,其中 且兩兩不相等.

(I)若.寫出下列三個(gè)數(shù)列中所有符合題目條件的數(shù)列的序號(hào);

①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2

(Ⅱ)記.若,證明:

(Ⅲ)若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)有兩個(gè)不同的零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟(jì)水平及個(gè)人消費(fèi)能力的提升,我國(guó)居民對(duì)精神層面的追求愈加迫切,如圖是2007年到2017年我國(guó)城鎮(zhèn)居民教育、文化、服務(wù)人均消費(fèi)支出同比增速的折線圖,圖中顯示2007年的同比增速為10%, 2007年與2006年同時(shí)期比較2007年的人均消費(fèi)支出費(fèi)用是2006年的1.1.則下列表述中正確的是(

A.2007年到2017年,同比增速的中位數(shù)約為10%

B.2007年到2017年,同比增速的極差約為12%

C.2011年我國(guó)城鎮(zhèn)居民教育、文化、服務(wù)人均消費(fèi)支出的費(fèi)用最高

D.2007年到2017年,我國(guó)城鎮(zhèn)居民教育、文化、服務(wù)人均消費(fèi)支出的費(fèi)用逐年增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有高一學(xué)生兩人,高二學(xué)生兩人,高三學(xué)生一人,將這五人排成一行,要求同一年級(jí)的學(xué)生不能相鄰,則不同的排法總數(shù)為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案