9.已知函數(shù)f(x)的定義域是(0,+∞),當(dāng)x>1時(shí),f(x)>0,且f(x•y)=f(x)+f(y)
(1)求f(1);
(2)證明:f(x)在定義域上是增函數(shù);
(3)如果f($\frac{1}{3}$)=-1,求滿足不等式f(x)-f(x-2)≥2的x的取值范圍.

分析 (1)由f(x•y)=f(x)+f(y),知f(1)=f(1×1)=f(1)+f(1)=2f(1),由此能求出f(1).
(2)設(shè)x1,x2∈(0,+∞)且x1<x2,則$\frac{{x}_{2}}{{x}_{1}}$>1,故f($\frac{{x}_{2}}{{x}_{1}}$)>0,由此導(dǎo)出f(x1)-f(x2)=f(x1)-f($\frac{{x}_{2}}{{x}_{1}}$•x1)=-f($\frac{{x}_{2}}{{x}_{1}}$)<0,從而能夠證明f(x)在(0,+∞)上是增函數(shù).
(3)令x=$\frac{1}{3}$,y=1,得f(1)=0.令x=3,y=$\frac{1}{3}$,得f(3)=1.令x=y=3,得f(9)=2,故f(x)-f(x-2)≥f(9),f(x)≥f(9x-18),由此能求出x的范圍.

解答 (1)解:∵f(x•y)=f(x)+f(y),
∴f(1)=f(1×1)=f(1)+f(1)=2f(1),
∴f(1)=0.
(2)證明:設(shè)x1,x2∈(0,+∞)且x1<x2,則$\frac{{x}_{2}}{{x}_{1}}$>1,
∴f($\frac{{x}_{2}}{{x}_{1}}$)>0,
∴f(x1)-f(x2)=f(x1)-f($\frac{{x}_{2}}{{x}_{1}}$•x1)=f(x1)-f($\frac{{x}_{2}}{{x}_{1}}$)-f(x1)=-f($\frac{{x}_{2}}{{x}_{1}}$)<0
∴f(x1)<f(x2),
∴f(x)在(0,+∞)上是增函數(shù).
(3)解:令x=$\frac{1}{3}$,y=1得,f($\frac{1}{3}$×1)=f($\frac{1}{3}$)+f(1),∴f(1)=0.
令x=3,y=$\frac{1}{3}$得,f(1)=f(3×$\frac{1}{3}$)=f(3)+f($\frac{1}{3}$),
∵f($\frac{1}{3}$)=-1,∴f(3)=1.
令x=y=3得,f(9)=f(3)+f(3)=2,
∴f(x)-f(x-2)≥f(9),f(x)≥f(9x-18)
∴$\left\{\begin{array}{l}{x>0}\\{x-2>0}\\{x≥9x-18}\end{array}\right.$,
解得2<x≤$\frac{9}{4}$.

點(diǎn)評(píng) 本題考查抽象函數(shù)的性質(zhì)和應(yīng)用,綜合性強(qiáng),難度大,對(duì)數(shù)學(xué)思維的要求較高,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)f(x)=-12x+x3的單調(diào)遞減區(qū)間為(  )
A.(-$\sqrt{3}$,$\sqrt{3}$)B.(-2,2)C.(0,2)D.(-∞,-2),(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.定義在R上的函數(shù)f(x),對(duì)任意x都滿足f(4x+4)=f(4x),則f(x)的最小正周期是(  )
A.1B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.求證:方程3x2-10xy+3y2+9x+5y-12=0表示兩條直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知a=${∫}_{0}^{π}$(sinx)dx,(1-ax)2016=a0+a1x+a2x2+a3x3+…+a2016x2016,則$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{2}^{3}}$+…+$\frac{{a}_{2016}}{{2}^{2016}}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知雙曲線的漸近線方程為3x±4y=0,一條準(zhǔn)線方程為y=$\frac{9}{5}$,求該雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.函數(shù)f(x)是奇函數(shù),且定義域?yàn)閇-1,1],在[-1,1]上是減函數(shù),解不等式f(x2-5x+4)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓x2+8y2=8,在橢圓上求一點(diǎn)P,使P到直線l:x-y+4=0的距離最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.解不等式2x-3<5x+1.

查看答案和解析>>

同步練習(xí)冊(cè)答案