分析 (1)x0f(x0)≥g(x0)可化為$a≤{x_0}^2-2ln{x_0}$,
構(gòu)造h(x)=x2-2lnx,求出其值域即可.
(2)$\frac{{H({x_1})-H({x_2})}}{{{x_1}-{x_2}}}=\frac{2}{{{x_1}-{x_2}}}ln\frac{{{x_1}+1}}{{{x_2}+1}}+({x_1}+{x_2})$;$H'(\frac{{{x_1}+{x_2}}}{2})=\frac{4}{{{x_1}+{x_2}+2}}+({x_1}+{x_2})$;
故可化為$\frac{2}{{{x_1}-{x_2}}}ln\frac{{{x_1}+1}}{{{x_2}+1}}$=$\frac{4}{{{x_1}+{x_2}+2}}$,即$ln\frac{{{x_1}+1}}{{{x_2}+1}}$=$\frac{{2({x_1}-{x_2})}}{{{x_1}+{x_2}+2}}$
又即$ln\frac{{{x_1}+1}}{{{x_2}+1}}$=$\frac{{2[({x_1}+1)-({x_2}+1)]}}{{({x_1}+1)+({x_2}+1)}}=\frac{{2[\frac{{{x_1}+1}}{{{x_2}+1}}-1]}}{{\frac{{{x_1}+1}}{{{x_2}+1}}+1}}$①,
令$\frac{{{x_1}+1}}{{{x_2}+1}}=t(t>1)$,①式可化為$lnt=\frac{2(t-1)}{t+1}$
令$u(t)=lnt-\frac{2(t-1)}{t+1}$,$u'(t)=\frac{{{{(t-1)}^2}}}{{t{{(t+1)}^2}}}>0$,只需考查u(t)的值域即可.
解答 解:(1)x0f(x0)≥g(x0)可化為$a≤{x_0}^2-2ln{x_0}$,
令h(x)=x2-2lnx,則$h'(x)=\frac{2(x+1)(x-1)}{x}(x>0)$
∴當(dāng)x∈$[\frac{1}{e},1)$時,h'(x)<0;當(dāng)x∈(1,e]時,h'(x)>0;
又∵$h(\frac{1}{e})=\frac{1}{e^2}+2<h(e)={e^2}-2$,∴$h{(x)_{max}}={e^2}-2$,則a≤e2-2.…5分
(2)H(x)=x2+2ln(x+1)-1,$H'(x)=\frac{2}{x+1}+2x$;
$\frac{{H({x_1})-H({x_2})}}{{{x_1}-{x_2}}}=\frac{2}{{{x_1}-{x_2}}}ln\frac{{{x_1}+1}}{{{x_2}+1}}+({x_1}+{x_2})$;
$H'(\frac{{{x_1}+{x_2}}}{2})=\frac{4}{{{x_1}+{x_2}+2}}+({x_1}+{x_2})$;
故可化為$\frac{2}{{{x_1}-{x_2}}}ln\frac{{{x_1}+1}}{{{x_2}+1}}$=$\frac{4}{{{x_1}+{x_2}+2}}$,即$ln\frac{{{x_1}+1}}{{{x_2}+1}}$=$\frac{{2({x_1}-{x_2})}}{{{x_1}+{x_2}+2}}$…7分
又即$ln\frac{{{x_1}+1}}{{{x_2}+1}}$=$\frac{{2[({x_1}+1)-({x_2}+1)]}}{{({x_1}+1)+({x_2}+1)}}=\frac{{2[\frac{{{x_1}+1}}{{{x_2}+1}}-1]}}{{\frac{{{x_1}+1}}{{{x_2}+1}}+1}}$①,
令$\frac{{{x_1}+1}}{{{x_2}+1}}=t(t>1)$,①式可化為$lnt=\frac{2(t-1)}{t+1}$,…9分
令$u(t)=lnt-\frac{2(t-1)}{t+1}$,$u'(t)=\frac{{{{(t-1)}^2}}}{{t{{(t+1)}^2}}}>0$,∴u(t)在(1,+∞)上遞增…11分
∴u(t)≥u(1)=0;∴u(t)無零點(diǎn),故A、B兩點(diǎn)不存在.…12分.
點(diǎn)評 本題考查導(dǎo)數(shù)的幾何意義、運(yùn)算及應(yīng)用,涉及分離變量、構(gòu)造函數(shù)、換元法以及轉(zhuǎn)化思想,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | a | C. | 1 | D. | 1-a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$α+β=\frac{π}{2}$ | B. | 3$α+β=\frac{π}{2}$ | C. | 2$α-β=\frac{π}{2}$ | D. | 3$α-β=\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-4,1) | B. | (-1,4) | C. | (-∞,-$\frac{3}{2}$) | D. | (-∞,$\frac{3}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com