某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖.
(1)求圖中實(shí)數(shù)a的值;
(2)若該校高一年級(jí)共有學(xué)生640人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù);
(3)若從數(shù)學(xué)成績(jī)?cè)?/span>[40,50)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的概率.
(1)a=0.03(2)544(3)
【解析】(1)由已知得,10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.
(2)根據(jù)頻率分布直方圖可知,成績(jī)不低于60分的頻率為1-10×(0.005+0.01)=0.85.
由于該校高一年級(jí)共有學(xué)生640人,利用樣本估計(jì)總體的思想,可估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù)約為640×0.85=544.
(3)易知成績(jī)?cè)?/span>[40,50)分?jǐn)?shù)段內(nèi)的人數(shù)為40×0.05=2,這2人分別記為A,B;成績(jī)?cè)?/span>[90,100]分?jǐn)?shù)段內(nèi)的人數(shù)為40×0.1=4,這4人分別記為C,D,E,F.
若從數(shù)學(xué)成績(jī)?cè)?/span>[40,50)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,則所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15個(gè).
如果2名學(xué)生的數(shù)學(xué)成績(jī)都在[40,50)分?jǐn)?shù)段內(nèi)或都在[90,100]分?jǐn)?shù)段內(nèi),那么這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值一定不大于10.如果一個(gè)成績(jī)?cè)?/span>[40,50)分?jǐn)?shù)段內(nèi),另一個(gè)成績(jī)?cè)?/span>[90,100]分?jǐn)?shù)段內(nèi),那么這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值一定大于10.
記“這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10”為事件M,則事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7個(gè).
所以所求概率為P(M)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊(cè)新課標(biāo)·通用版限時(shí)集11講練習(xí)卷(解析版) 題型:選擇題
已知一個(gè)三棱錐的三視圖如圖所示,其中三個(gè)視圖都是直角三角形,則在該三棱錐的四個(gè)面中,直角三角形的個(gè)數(shù)為( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試選修4-4坐標(biāo)系與參數(shù)方程練習(xí)卷(解析版) 題型:解答題
在直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圓C1,直線C2的極坐標(biāo)方程分別為ρ=4sin θ,ρcos =2.
(1)求C1與C2交點(diǎn)的極坐標(biāo);
(2)設(shè)P為C1的圓心,Q為C1與C2交點(diǎn)連線的中點(diǎn).已知直線PQ的參數(shù)方程為 (t∈R為參數(shù)),求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試選修4-1幾何證明選講練習(xí)卷(解析版) 題型:解答題
如圖,AB是⊙O的直徑,BE為⊙O的切線,點(diǎn)C為⊙O上不同于A,B的一點(diǎn),AD為∠BAC的平分線,且分別與BC交于H,與⊙O交于D,與BE交于E,連接BD,CD.
(1)求證:BD平分∠CBE;
(2)求證:AH·BH=AE·HC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試解答題搶分訓(xùn)練練習(xí)卷(解析版) 題型:解答題
設(shè)L為曲線C:y=在點(diǎn)(1,0)處的切線.
(1)求L的方程;
(2)證明:除切點(diǎn)(1,0)之外,曲線C在直線L的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測(cè)試解答題保分訓(xùn)練練習(xí)卷(解析版) 題型:解答題
為調(diào)查甲、乙兩校高三年級(jí)學(xué)生某次聯(lián)考數(shù)學(xué)成績(jī)情況,用簡(jiǎn)單隨機(jī)抽樣,從這兩校中各抽取30名高三年級(jí)學(xué)生,以他們的數(shù)學(xué)成績(jī)(百分制)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖.
(1)若甲校高三年級(jí)每位學(xué)生被抽取的概率為0.05,求甲校高三年級(jí)學(xué)生總?cè)藬?shù),并估計(jì)甲校高三年級(jí)這次聯(lián)考數(shù)學(xué)成績(jī)的及格率(60分及60分以上為及格);
(2)設(shè)甲、乙兩校高三年級(jí)學(xué)生這次聯(lián)考數(shù)學(xué)平均成績(jī)分別為1,2,估計(jì)1-2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(四)第二章第一節(jié)練習(xí)卷(解析版) 題型:填空題
已知兩個(gè)函數(shù)f(x)和g(x)的定義域和值域都是集合{1,2,3},其函數(shù)對(duì)應(yīng)關(guān)系如下表:
則方程g(f(x))=x的解集為____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(六)第二章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
設(shè)f(x)是連續(xù)的偶函數(shù),且當(dāng)x>0時(shí)是單調(diào)函數(shù),則滿足f(x)=f()的所有x之和為( )
(A)-3 (B)3 (C)-8 (D)8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(五)第二章第二節(jié)練習(xí)卷(解析版) 題型:選擇題
函數(shù)f(x)=|x|和g(x)=x(2-x)的遞增區(qū)間依次是( )
(A)(-∞,0],(-∞,1] (B)(-∞,0],[1,+∞)
(C)[0,+∞),(-∞,1] (D)[0,+∞),[1,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com