分析 通過對(duì)數(shù)的運(yùn)算性質(zhì)可知an=ln(n+1)-lnn(n∈N*),進(jìn)而并項(xiàng)相加即得結(jié)論.
解答 解:∵an=ln(1+$\frac{1}{n}$)
=ln$\frac{n+1}{n}$
=ln(n+1)-lnn(n∈N*),
∴Sn=(ln2-ln1)+(ln3-ln2)+…+[ln(n+1)-lnn]
=ln(n+1)-ln1
=ln(n+1),
故答案為:ln(n+1).
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,利用對(duì)數(shù)的性質(zhì)是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 12 | C. | 24 | D. | 36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{e^2}{4}$,+∞) | B. | ($\frac{{{e^{\;}}}}{2}$,+∞) | C. | (1,$\frac{e^2}{4}$) | D. | (1,$\frac{{{e^{\;}}}}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 36 | B. | 7×37 | C. | -7×37 | D. | 14×37 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -200 | B. | -100 | C. | 200 | D. | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com