“求方程x+x=1的解”有如下解題思路:設(shè)f(x)=x+x,則f(x)在R上單調(diào)遞減,且f(2)=1,所以原方程有唯一解x=2.類(lèi)比上述解題思路,不等式x6-(x+2)>(x+2)3-x2的解集是________.
(-∞,-1)∪(2,+∞)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
下列推理中屬于歸納推理且結(jié)論正確的是( )
A.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.由an=2n-1,求出S1=12,S2=22,S3=32,…,推斷:Sn=n2
B.由f(x)=xcos x滿(mǎn)足f(-x)=-f(x)對(duì)∀x∈R都成立,推斷:f(x)=xcos x為奇函數(shù)
C.由圓x2+y2=r2的面積S=πr2,推斷:橢圓=1(a>b>0)的面積S=πab
D.由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推斷:對(duì)一切n∈N*,(n+1)2>2n
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知常數(shù)a,b,c都是實(shí)數(shù),f(x)=ax3+bx2+cx-34的導(dǎo)函數(shù)為f′ (x),f′(x)≤0的解集為{x|-2≤x≤3},若f(x)的極小值等于-115,則a的值是( )
A.- B.
C.2 D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知全集U={0,1,2,3,4},A={1,2,3},B={2,4},則如圖陰影部分表示的集合為( )
A.{0,2} B.{0,1,3}
C.{1,3,4} D.{2,3,4}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=若函數(shù)y=f(x)-2有3個(gè)零點(diǎn),則實(shí)數(shù)a的值為( )
A.-4 B.-2
C.0 D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在四棱錐P-ABCD中,側(cè)棱PA⊥底面ABCD,底面ABCD為矩形,E為PD上一點(diǎn),AD=2AB=2AP=2,PE=2DE.
(1)若F為PE的中點(diǎn),求證:BF∥平面ACE;
(2)求三棱錐P-ACE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知矩陣A=的一個(gè)特征值為2,其對(duì)應(yīng)的一個(gè)特征向量為α=.
(1)求矩陣A;
(2)若A,求x,y的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com