設(shè)函數(shù)(p是實(shí)數(shù),e是自然對(duì)數(shù)的底數(shù))
(1)若函數(shù)f(x)在定義域內(nèi)不單調(diào),求實(shí)數(shù)p的取值范圍;
(2)若在[1,e]上至少存在一個(gè)x,使得f(x)>g(x),求實(shí)數(shù)p的取值范圍.
【答案】分析:(1)求出f(x)的導(dǎo)函數(shù),令導(dǎo)函數(shù)等于0,在(0,+∞)上有解,分離出p,利用基本不等式求出p的范圍,檢驗(yàn)p=1是否滿足題意.
(2)將問(wèn)題轉(zhuǎn)化為f(x)>g(x)在[1,e]上有解,分離出p,構(gòu)造函數(shù)h(x),利用導(dǎo)數(shù)求出h(x)的最小值,令p>h(x)的最小值即得p的范圍.
解答:解:(1)
有條件得,f'(x)=0在(0,+∞)上有解
在(0,+∞)上有解,∵x>0,∴,∴0<p≤1
若當(dāng)p=1時(shí),≥0,不符條件,所以0<p<1
(2)有題意得:f(x)>g(x)在[1,e]上有解
在[1,e]上有解
在[1,e]上有解
,只需p>h(x)min,所以在[1,e]是減函數(shù)在[1,e]是增函數(shù)
所以h(x)在[1,e]是減函數(shù)
點(diǎn)評(píng):解決方程有解問(wèn)題轉(zhuǎn)化為求函數(shù)的值域;解決不等式有解問(wèn)題,轉(zhuǎn)化為求函數(shù)的最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
(p是實(shí)數(shù),e是自然對(duì)數(shù)的底數(shù))
(1)若函數(shù)f(x)在定義域內(nèi)不單調(diào),求實(shí)數(shù)p的取值范圍;
(2)若在[1,e]上至少存在一個(gè)x0,使得f(x0)>g(x0),求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
.(p是實(shí)數(shù),e是自然對(duì)數(shù)的底數(shù))
(1)若直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象相切于點(diǎn)(1,0),求p的值;
(2)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍;
(3)若在[1,e]上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)數(shù)學(xué)公式(p是實(shí)數(shù),e是自然對(duì)數(shù)的底數(shù))
(1)若函數(shù)f(x)在定義域內(nèi)不單調(diào),求實(shí)數(shù)p的取值范圍;
(2)若在[1,e]上至少存在一個(gè)x0,使得f(x0)>g(x0),求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省安慶市潛山中學(xué)高三(上)第三次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù)(p是實(shí)數(shù),e是自然對(duì)數(shù)的底數(shù))
(1)若函數(shù)f(x)在定義域內(nèi)不單調(diào),求實(shí)數(shù)p的取值范圍;
(2)若在[1,e]上至少存在一個(gè)x,使得f(x)>g(x),求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案