如圖所示,點P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,則PB與AC所成的角是(  )
A.90°  B.60° 
C.45°  D.30°
B

試題分析:連接BD交AC于點O,取PD中點Q,連接OQ,所以O(shè)Q//PB,
設(shè)正方形ABCD邊長為a,因為PA垂直平面ABCD,PA=AB,所以PD=PB=DB=AC=,
因為在三角形DBP中,O、Q是中點,所以,在直角三角形PAD中,,         而,所以三角形AOQ是等邊三角形,即三個角都是60度,所以O(shè)Q與AC所成的角=60度, 因為OQ||PB,所以PB與AC所成的角為60°.
點評:要求兩條異面直線的夾角,需要先做出兩條異面直線的夾角再求解,注意兩條異面直線的夾角的取值范圍。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖甲,設(shè)正方形的邊長為,點分別在上,并且滿足
,如圖乙,將直角梯形沿折到的位置,使點
平面上的射影恰好在上.

(1)證明:平面;
(2)求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

用平行于棱錐底面的平面去截棱錐,則截面與底面之間的部分叫棱臺。
如圖,在四棱臺中,下底是邊長為的正方形,上底是邊長為1的正方形,側(cè)棱⊥平面,.

(Ⅰ)求證:平面
(Ⅱ)求平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,底面△為正三角形的直三棱柱中,,,的中點,點在平面內(nèi),

(Ⅰ)求證:;  
(Ⅱ)求證:∥平面;
(Ⅲ)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在棱長為1的正方體中.

⑴求異面直線所成的角;
⑵求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)為兩條直線,為兩個平面,則下列結(jié)論成立的是(  )
A.若,則B.若,則
C.若,D.若

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方體棱長為1,的中點,的中點.

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知平面,直線,直線,有下面四個命題:
(1)     (2)
(3)     (4)
 其中正確的是(   )
A.(1)與(2)  B.(3)與(4)  C.(1)與(3)D.(2)與(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=

(1)求證:平面EAB⊥平面ABCD
(2)求二面角A-EC-D的余弦值

查看答案和解析>>

同步練習(xí)冊答案