【題目】如圖,已知多面體的底面是邊長為2的菱形且平面,.

(1)證明:平面平面;

(2)求二面角的余弦值.

【答案】(1)見證明;(2)

【解析】

1)連結(jié),交于點,設(shè)中點為,連結(jié),推導出,且,從而四邊形是菱形,進而,平面平面,由此能證明平面平面;(2)推導出是邊長為2的等邊三角形,設(shè)的中點為,連結(jié),則,以為原點,,分別為軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值.

(1)證明:連結(jié),交于點,設(shè)中點為,連結(jié),.

分別為、的中點,∴,且

,且,∴,且.

∴四邊形為平行四邊形,∴,即.

平面,平面,所以.

是菱形,所以.

,∴平面

,∴平面.

平面

∴平面平面.

(2)∵,四邊形為菱形.故為2的等邊三角形.

設(shè)的中點為,連結(jié),則.以為原點,,分別為,軸,建立空間直角坐標系(如圖).

,,,,,.設(shè)平面的法向量為,則

,則,所以

設(shè)平面的法向量為,則

,則所以.

設(shè)二面角的大小為,由于為鈍角,

所以

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓和雙曲線有共同的焦點,,點,的交點,若是銳角三角形,則橢圓離心率的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三個班共有學生100人,為調(diào)查他們的體育鍛煉情況,通過分層抽樣獲取了部分學生一周的鍛煉時間,數(shù)據(jù)如下表(單位:小時).

6

7

6

7

8

5

6

7

8

(Ⅰ)試估計班學生人數(shù);

(Ⅱ)從班和班抽出來的學生中各選一名,記班選出的學生為甲,班選出的學生為乙,若學生鍛煉相互獨立,求甲的鍛煉時間大于乙的鍛煉時間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知中,角的對邊分別為

)若,求面積的最大值;

)若,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)判斷函數(shù)的奇偶性,并加以證明;

2)用定義證明上是減函數(shù);

3)函數(shù)上是單調(diào)增函數(shù)還是單調(diào)減函數(shù)?(直接寫出答案,不要求寫證明過程).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為OD、EF為圓O上的點,△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形。沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得DE、F重合,得到三棱錐。當△ABC的邊長變化時,所得三棱錐體積(單位:cm3)的最大值為_______。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義滿足不等式|xA|BARB0)的實數(shù)x的集合叫做AB鄰域.若a+btt為正常數(shù))的a+b鄰域是一個關(guān)于原點對稱的區(qū)間,則a2+b2的最小值為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校100名學生期中考試數(shù)學成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間如下:

組號

第一組

第二組

第三組

第四組

第五組

分組

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

(1)求圖中a的值;

(2)根據(jù)頻率分布直方圖,估計這100名學生期中考試數(shù)學成績的平均分;

(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2,求其中恰有1人的分數(shù)不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確的是( )

A. 是向量,不共線的充要條件

B. 在空間四邊形中,

C. 在棱長為1的正四面體中,

D. 設(shè),三點不共線,為平面外一點,若,則,,四點共面

查看答案和解析>>

同步練習冊答案