設(shè)函數(shù)f(x)是定義在[-1,0)∪(0,1]上的奇函數(shù),當(dāng)x∈[-1,0)時(shí),f(x)=2ax+數(shù)學(xué)公式(a∈R).
(1)當(dāng)x∈(0,1]時(shí),求f(x)的解析式;
(2)若a>-1,試判斷f(x)在(0,1)上的單調(diào)性,并證明你的結(jié)論;
(3)是否存在a,使得當(dāng)x∈(0,1)時(shí),f(x)有最大值-6.

(1)解:設(shè)x∈(0,1],則-x∈[-1,0),f(-x)=-2ax+,
∵f(x)是奇函數(shù).∴f(x)=2ax-,x∈(0,1].

(2)證明:∵f′(x)=2a+,
∵a>-1,x∈(0,1],>1,
∴a+>0.即f′(x)>0.
∴f(x)在(0,1]上是單調(diào)遞增函數(shù).

(3)解:當(dāng)a>-1時(shí),f(x)在(0,1]上單調(diào)遞增.
f(x)max=f(1)=-6,?a=-(不合題意,舍之),
當(dāng)a≤-1時(shí),f′(x)=0,x=
如下表:fmax(x)=f()=-6,解出a=-2. x=∈(0,1).

∴存在a=-2,使f(x)在(0,1)上有最大值-6.
分析:(1)∵f(x)是定義在[-1,0)∪(0,1]上的奇函數(shù),
∴可以利用f(-x)=-f(x)求當(dāng)x∈(0,1]時(shí),求f(x)的解析式;
(2)f(x)在(0,1)上的單調(diào)性,可以用判斷在(0,1)上f'(x)與0的關(guān)系來確定.
(3)對(duì)a的取值對(duì)f'(x)與0的關(guān)系進(jìn)行分類討論,根據(jù)f(x)在(0,1)上的單調(diào)性和f(x)有最大值-6,構(gòu)造方程進(jìn)行求解.
點(diǎn)評(píng):(1)若奇函數(shù)經(jīng)過原點(diǎn),則必有f(0)=0,這個(gè)關(guān)系式大大簡(jiǎn)化了解題過程,要注意在解題中使用.(2)對(duì)于給出具體解析式的函數(shù),判斷或證明其在某區(qū)間上的單調(diào)性問題,可以結(jié)合定義 ( 基本步驟為取 點(diǎn)、作差或作商、變形、判斷)求解.可導(dǎo)函數(shù)則可以利用導(dǎo)數(shù)解之.(3)運(yùn)用函數(shù)的單調(diào)性是求最值(或值域)的常用方法之一,特別對(duì)于抽象函數(shù),更值得關(guān)注.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在(-∞,+∞)上的增函數(shù),如果不等式f(1-ax-x2)<f(2-a)對(duì)于任意x∈[0,1]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在(0,+∞)上的減函數(shù),并且滿足f(xy)=f(x)+f(y),f(
1
3
)=1

(1)求f(
1
9
)
;
(2)若f(x)+f(2-x)<2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在[-1,0)∪(0,1]上的偶函數(shù),當(dāng)x∈[-1,0)時(shí),f(x)=x3-ax(a∈R).
(1)當(dāng)x∈(0,1]時(shí),求f(x)的解析式;
(2)若a>3,試判斷f(x)在(0,1]上的單調(diào)性,并證明你的結(jié)論;
(3)是否存在a,使得當(dāng)x∈(0,1]時(shí),f(x)有最大值1?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在[a,b]上的奇函數(shù),則f(a+b)=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù).若當(dāng)x≥0時(shí),f(x)=
|1-
1
x
0
x>0;,
x=0.

(1)求f(x)在(-∞,0)上的解析式.
(2)請(qǐng)你作出函數(shù)f(x)的大致圖象.
(3)當(dāng)0<a<b時(shí),若f(a)=f(b),求ab的取值范圍.
(4)若關(guān)于x的方程f2(x)+bf(x)+c=0有7個(gè)不同實(shí)數(shù)解,求b,c滿足的條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案