如圖,E是以AB為直徑的半圓上異于A、B的點(diǎn),矩形ABCD所在的平面垂直于該半圓所在的平面,且AB=2AD=2.
(1)求證:EA⊥EC;
(2)設(shè)平面ECD與半圓弧的另一個(gè)交點(diǎn)為F.
①試證:EF∥AB;
②若EF=1,求三棱錐E-ADF的體積.

【答案】分析:(1)利用面面垂直的性質(zhì),可得BC⊥平面ABE,再利用線面垂直的判定證明AE⊥面BCE,即可證得結(jié)論;
(2)①先證明AB∥面CED,再利用線面平行的性質(zhì),即可證得結(jié)論;
②取AB中點(diǎn)O,EF的中點(diǎn)O′,證明AD⊥平面ABE,利用等體積,即可得到結(jié)論.
解答:(1)證明:∵平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB,BC⊥AB,BC?平面ABCD
∴BC⊥平面ABE
∵AE?平面ABE,∴BC⊥AE
∵E在以AB為直徑的半圓上,∴AE⊥BE
∵BE∩BC=B,BC,BE?面BCE
∴AE⊥面BCE
∵CE?面BCE,∴EA⊥EC;
(2)①證明:∵AB∥CD,AB?面CED,CD?面CED,
∴AB∥面CED,
∵AB?面ABE,面ABE∩面CED=EF
∴AB∥EF;
②取AB中點(diǎn)O,EF的中點(diǎn)O′,
在Rt△OO′F中,OF=1,O′F=,∴OO′=
∵BC⊥面ABE,AD∥BC
∴AD⊥平面ABE
∴VE-ADF=VD-AEF===
點(diǎn)評(píng):本題考查面面垂直的性質(zhì),線面垂直的判定與性質(zhì),考查線面垂直,考查三棱錐體積的計(jì)算,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•湖北模擬)如圖,直二面角E-AB-C中,四邊形ABEF是矩形,AB=2,AF=2
3
,△ABC是以A為直角頂點(diǎn)的等腰直角三角形,點(diǎn)P是線段BF上的一個(gè)動(dòng)點(diǎn).
(1)若PB=PF,求異面直線PC與AB所成的角的余弦值;
(2)若二面角P-AC-B的大小為300,求證:FB⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

如圖,ABCD是正方形,E、F分別是ADBc邊上的點(diǎn),EF∥AB,EFAC于點(diǎn)O,以EF為棱把它折成直二面角A—EF—D后,求證:不論EF怎樣移動(dòng),∠AOC是定值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

如圖,ABCD是正方形,EF分別是AD、Bc邊上的點(diǎn),EF∥AB,EFAC于點(diǎn)O,以EF為棱把它折成直二面角A—EF—D后,求證:不論EF怎樣移動(dòng),∠AOC是定值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD是正方形,EF分別是AD、BC邊上的點(diǎn),EFAB,EFAC于點(diǎn)O,以EF為棱把它折成直二面角A-EF-D后,求證:不論EF怎樣移動(dòng),∠AOC是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年湖北省宜昌一中、枝江一中、當(dāng)陽一中三校聯(lián)合體高三2月聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,直二面角E-AB-C中,四邊形ABEF是矩形,AB=2,AF=,△ABC是以A為直角頂點(diǎn)的等腰直角三角形,點(diǎn)P是線段BF上的一個(gè)動(dòng)點(diǎn).
(1)若PB=PF,求異面直線PC與AB所成的角的余弦值;
(2)若二面角P-AC-B的大小為30,求證:FB⊥平面PAC.

查看答案和解析>>

同步練習(xí)冊(cè)答案