精英家教網 > 高中數學 > 題目詳情

直線l垂直于梯形ABCD的兩腰AB和CD,直線m垂直于AD和BC,則l與m的位置關系是


  1. A.
    相交
  2. B.
    平行
  3. C.
    異面
  4. D.
    不確定
D
分析:作出如圖所示的直四棱柱,分別找出或作出符合條件的直線l、m,即可判斷出結論.
解答:如圖所示:直四棱柱ABCD-A1B1C1D1中,
取棱AA1為直線l,則l⊥AB,l⊥CD.
①若取棱D1D為直線m,則m⊥AD,m⊥BC,滿足條件,此時m∥l;
②過點A作AM⊥BC,∵AD∥BC,∴AM⊥AD,取直線AM為m,則滿足條件,此時l與m相交;
③過線段AD上除去點A以外的點E作EF∥AM,則EF⊥AD,EF⊥BC,取EF為直線m,則滿足條件,此時l與m為異面直線.
綜上可知:l與m的位置關系是平行、相交或異面直線,因此其位置關系不確定.
故選D.
點評:作出直四棱柱,熟練掌握空間中直線的位置關系是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•鹽城一模)已知四邊形ABCD為梯形,AB∥CD,l為空間一直線,則“l(fā)垂直于兩腰AD,BC”是“l(fā)垂直于兩底AB,DC”的
充分不必要
充分不必要
條件(填寫“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中的一個).

查看答案和解析>>

科目:高中數學 來源: 題型:

直線l垂直于梯形ABCD的兩腰AB和CD,直線m垂直于AD和BC,則l與m的位置關系是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,南昌二中校徽中蘊含等腰梯形ABCD,若等腰梯形ABCD的上底長為2,下底長為4,高為1,直線l垂直AB交梯形于M,N兩點,記AN=x,MN與梯形相交左側部分面積為y.
(1)試寫出y關于x的函數關系式y(tǒng)=f(x);
(2)作出函數y=f(x)的草圖.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年廣東省深圳市科學高中高一(上)期末數學試卷(國際體系)(解析版) 題型:選擇題

直線l垂直于梯形ABCD的兩腰AB和CD,直線m垂直于AD和BC,則l與m的位置關系是( )
A.相交
B.平行
C.異面
D.不確定

查看答案和解析>>

同步練習冊答案