【題目】某校后勤處為跟蹤調(diào)查該校餐廳的當(dāng)月的服務(wù)質(zhì)量,兌現(xiàn)獎(jiǎng)懲,從就餐的學(xué)生中隨機(jī)抽出100位學(xué)生對(duì)餐廳服務(wù)質(zhì)量打分(5分制),得到如下柱狀圖:

(1)從樣本中任意選取2名學(xué)生,求恰好有一名學(xué)生的打分不低于4分的概率;
(2)若以這100人打分的頻率作為概率,在該校隨機(jī)選取2名學(xué)生進(jìn)行打分(學(xué)生打分之間相互獨(dú)立)記 表示兩人打分之和,求 的分布列和 .

【答案】
(1)解:設(shè)“從樣本中任意選取2名學(xué)生,求恰好有一名學(xué)生的打分不低于4分”為事件 , .
(2)解: .

;

;

;

;

;

.

分布列如下:

4

5

6

7

8

9

10


【解析】(1)由題意可知不低于4分級(jí)4分或5分共50人,基本事件為從100人中任選2人即可得到事件總數(shù),根據(jù)題意符合事件為從2分與3分50人中選出1人,4分與5分中選出1人的事件個(gè)數(shù)即可求出概率值。(2)由題意可知X的取值,再根據(jù)相互獨(dú)立事件同時(shí)發(fā)生概率和互斥事件的概率公式代入數(shù)值分別求出其概率值,列表即可再利用數(shù)學(xué)期望公式求出值即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】美索不達(dá)米亞平原是人類文明的發(fā)祥地之一.美索不達(dá)米亞人善于計(jì)算,他們創(chuàng)造了優(yōu)良的計(jì)數(shù)系統(tǒng),其中開平方算法是最具有代表性的.程序框圖如圖所示,若輸入a,n,ξ的值分別為8,2,0.5,(每次運(yùn)算都精確到小數(shù)點(diǎn)后兩位)則輸出結(jié)果為(
A.2.81
B.2.82
C.2.83
D.2.84

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn+n=2an(n∈N*).

(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;

(2)若bn=an+2n+1,數(shù)列{bn}的前n項(xiàng)和為Tn..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系 中,曲線 的參數(shù)方程為 (其中 為參數(shù)),曲線 ,以坐標(biāo)原點(diǎn) 為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線 的普通方程和曲線 的極坐標(biāo)方程;
(2)若射線 )與曲線 , 分別交于 , 兩點(diǎn),求 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題 :關(guān)于 的不等式 對(duì)一切 恒成立,命題 :指數(shù)函數(shù) 是增函數(shù),若 為真、 為假,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,側(cè)面⊥底面,底面為直角梯形,//,,,的中點(diǎn).

(Ⅰ)求證:PA//平面BEF;

(Ⅱ)若PCAB所成角為,求的長(zhǎng);

(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長(zhǎng)度單位.已知曲線 的極坐標(biāo)方程為 ,直線 的參數(shù)方程為
為參數(shù), 為直線的傾斜角).
(1)寫出直線 的普通方程和曲線 的直角坐標(biāo)方程;
(2)若直線 與曲線 有唯一的公共點(diǎn),求角 的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)|a|≤1,|x|≤1時(shí),關(guān)于x的不等式|x2﹣ax﹣a2|≤m恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.[ , +∞)
B.[ , +∞)
C.[ , +∞)
D.[ , +∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用數(shù)學(xué)歸納法證明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12 時(shí),由n=k的假設(shè)到證明n=k+1時(shí),等式左邊應(yīng)添加的式子是(
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案