(08年北京卷理)(本小題共13分)
對(duì)于每項(xiàng)均是正整數(shù)的數(shù)列,定義變換,將數(shù)列變換成數(shù)列
.
對(duì)于每項(xiàng)均是非負(fù)整數(shù)的數(shù)列,定義變換,將數(shù)列各項(xiàng)從大到小排列,然后去掉所有為零的項(xiàng),得到數(shù)列;又定義
.
設(shè)是每項(xiàng)均為正整數(shù)的有窮數(shù)列,令.
(Ⅰ)如果數(shù)列為5,3,2,寫出數(shù)列;
(Ⅱ)對(duì)于每項(xiàng)均是正整數(shù)的有窮數(shù)列,證明;
(Ⅲ)證明:對(duì)于任意給定的每項(xiàng)均為正整數(shù)的有窮數(shù)列,存在正整數(shù),當(dāng)時(shí),.
【標(biāo)準(zhǔn)答案】: (Ⅰ)解:,
,
;
,
.
(Ⅱ)證明:設(shè)每項(xiàng)均是正整數(shù)的有窮數(shù)列為,
則為,,,,,
從而
.
又,
所以
,
故.
(Ⅲ)證明:設(shè)是每項(xiàng)均為非負(fù)整數(shù)的數(shù)列.
當(dāng)存在,使得時(shí),交換數(shù)列的第項(xiàng)與第項(xiàng)得到數(shù)列,則
.
當(dāng)存在,使得時(shí),若記數(shù)列為,
則.
所以.
從而對(duì)于任意給定的數(shù)列,由可知
.
又由(Ⅱ)可知,所以.
即對(duì)于,要么有,要么有.
因?yàn)?IMG height=24 src='http://thumb.zyjl.cn/pic1/img/20090321/20090321143821043.gif' width=43>是大于2的整數(shù),所以經(jīng)過(guò)有限步后,必有.
即存在正整數(shù),當(dāng)時(shí),。
【高考考點(diǎn)】: 數(shù)列
【易錯(cuò)提醒】: 入口出錯(cuò)
【備考提示】: 由一個(gè)數(shù)列為基礎(chǔ),按著某種規(guī)律新生出另一個(gè)數(shù)列的題目,新數(shù)列的前幾項(xiàng)一定不難出錯(cuò),它出錯(cuò),則整體出錯(cuò)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年北京卷理)(本小題共14分)
已知菱形的頂點(diǎn)在橢圓上,對(duì)角線所在直線的斜率為1.
(Ⅰ)當(dāng)直線過(guò)點(diǎn)時(shí),求直線的方程;
(Ⅱ)當(dāng)時(shí),求菱形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年北京卷理)如圖,函數(shù)的圖象是折線段,其中的坐標(biāo)分別為,則 ; .(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年北京卷理)(本小題共13分)
甲、乙等五名奧運(yùn)志愿者被隨機(jī)地分到四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者.
(Ⅰ)求甲、乙兩人同時(shí)參加崗位服務(wù)的概率;
(Ⅱ)求甲、乙兩人不在同一個(gè)崗位服務(wù)的概率。
(Ⅲ)設(shè)隨機(jī)變量為這五名志愿者中參加崗位服務(wù)的人數(shù),求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年北京卷理)(本小題共14分)
如圖,在三棱錐中,,,,.
(Ⅰ)求證:;
(Ⅱ)求二面角的大小;
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年北京卷理)過(guò)直線上的一點(diǎn)作圓的兩條切線,當(dāng)直線關(guān)于對(duì)稱時(shí),它們之間的夾角為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com