18.在直角坐標系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=3+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),
(Ⅰ)以坐標原點為極點,以x軸的正半軸為極軸建立極坐標系,求曲線C的極坐標方程;
(Ⅱ)直線l的方程為$ρsin(θ+\frac{π}{4})$=$\frac{\sqrt{2}}{2}$,求直線l被曲線C截得的弦長.

分析 (Ⅰ)求出曲線C的普通方程,即可求曲線C的極坐標方程;
(Ⅱ)直線l的方程為$ρsin(θ+\frac{π}{4})$=$\frac{\sqrt{2}}{2}$,則x+y=1代入(x-3)2+y2=4解得y=0和y=-2,即可求直線l被曲線C截得的弦長.

解答 解:(Ⅰ)曲線C的普通方程為(x-3)2+y2=4,即x2+y2-6x+5=0,…(2分)
將x=ρcosθ,y=ρsinθ代入,得曲線C的極坐標方程是ρ2-6ρcosθ+5=0. …(5分)
(Ⅱ)曲線l的方程ρsinθ+ρcosθ=1,則x+y=1,…(7分)
將x=1-y代入(x-3)2+y2=4解得y=0和y=-2,
即交點A(1,0),B(3,-2),弦長為|AB|=2$\sqrt{2}$.…(10分)

點評 本題考查三種方程的互化,考查直線與圓的位置關(guān)系,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$\overrightarrow{a}$=(x,2),$\overrightarrow$=(1,6),若$\overrightarrow{a}$∥$\overrightarrow$,則x=( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知p:x<8,q:x<a,且q是p的充分而不必要條件,則a的取值范圍為a<8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個三棱錐的三視圖如圖所示,則三棱錐的體積為( 。
A.$\frac{5}{3}$B.$\frac{10}{3}$C.$\frac{20}{3}$D.$\frac{25}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,在四邊形ABCD中,AD=DC=CB=1,$AB=\sqrt{3}$,對角線$AC=\sqrt{2}$.將△ACD沿AC所在直線翻折,當(dāng)AD⊥BC時,線段BD的長度為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)f(x)的圖象和g(x)=ln(2x)的圖象關(guān)于直線x-y=0對稱,則f(x)的解析式為$\frac{1}{2}$ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.△ABC各角的對應(yīng)邊分別為a,b,c,滿足$\frac{a}{b+c}+\frac{a+c}≥1$,則角C的范圍是( 。
A.$(0,\frac{π}{3}]$B.$(0,\frac{π}{6}]$C.$[\frac{π}{3},π)$D.$[\frac{π}{6},π)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.?dāng)?shù)列4,a,9是等比數(shù)列是“a=±6”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.$\frac{5i}{2-i}$=(  )
A.1+2iB.-1+2iC.-1-2iD.1-2i

查看答案和解析>>

同步練習(xí)冊答案