A. | -$\frac{15}{16}$ | B. | -$\frac{7}{16}$ | C. | $\frac{7}{16}$ | D. | $\frac{15}{16}$ |
分析 先將一個(gè)向量用其余兩個(gè)向量表示出來,然后借助于平方使其出現(xiàn)向量模的平方,則才好用上外接圓半徑,然后進(jìn)一步分析結(jié)論,容易化簡出要求的結(jié)果.
解答 解:由$\overrightarrow{OA}$+2$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,得2$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$-\overrightarrow{OA}$,
兩邊平方得$(2\overrightarrow{OB}+4\overrightarrow{OC})^{2}={\overrightarrow{OA}}^{2}$,即$4{\overrightarrow{OB}}^{2}+16\overrightarrow{OB}•\overrightarrow{OC}+16{\overrightarrow{OC}}^{2}={\overrightarrow{OA}}^{2}$,
得$4+16+16\overrightarrow{OB}•\overrightarrow{OC}=1$,∴$\overrightarrow{OB}•\overrightarrow{OC}=-\frac{19}{16}$;
由$\overrightarrow{OA}$+2$\overrightarrow{OB}$+4$\overrightarrow{OC}$=$\overrightarrow{0}$,得$\overrightarrow{OA}$+4$\overrightarrow{OC}$=-2$\overrightarrow{OB}$,
兩邊平方得$(\overrightarrow{OA}+4\overrightarrow{OC})^{2}=4{\overrightarrow{OB}}^{2}$,即${\overrightarrow{OA}}^{2}+8\overrightarrow{OA}•\overrightarrow{OC}+16{\overrightarrow{OC}}^{2}=4{\overrightarrow{OB}}^{2}$,
得$1+8\overrightarrow{OA}•\overrightarrow{OC}+16=4$,∴$\overrightarrow{OA}•\overrightarrow{OC}=-\frac{13}{8}$.
∴$\overrightarrow{AB}$•$\overrightarrow{OC}$=$(\overrightarrow{OB}-\overrightarrow{OA})•\overrightarrow{OC}=\overrightarrow{OB}•\overrightarrow{OC}-\overrightarrow{OA}•\overrightarrow{OC}$=$-\frac{19}{16}+\frac{13}{8}=\frac{7}{16}$.
故選:C.
點(diǎn)評 本題考查平面向量的數(shù)量積運(yùn)算,考查數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2$\sqrt{2}$ | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 19 | B. | 14 | C. | -18 | D. | -19 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | p∨(¬q) | C. | (¬p)∧q | D. | p∧(¬q) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com