【題目】已知定義域為的函數(shù)是奇函數(shù).

1)求的值;

2)判斷函數(shù)的單調(diào)性并證明;

3)若對任意的,不等式恒成立,求的取值范圍

【答案】(1

2)見解析

3

【解析】試題分析:(1在定義域為上是奇函數(shù),所以=0,即求出,(2)由()知,利用單調(diào)性的定義進行證明,設(shè),做差,然后進一步判定正負,從而確定的單調(diào)性;(3)因為是奇函數(shù),所以等價于,利用(2)問的結(jié)論得出的大小,轉(zhuǎn)化為二次函數(shù)恒成立的問題,由,得出的范圍.

試題解析:解:(1)因為在定義域為上是奇函數(shù),所以=0,即..4

2)由()知,

設(shè)

因為函數(shù)y=2R上是增函數(shù)且>0

>0 >0

上為減函數(shù). 8

3)因是奇函數(shù),從而不等式:

等價于, 9

為減函數(shù),由上式推得:

即對一切有: , 10

從而判別式12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱臺中, , , ,平面平面,

(1)求證: 平面

(2)點上一點,二面角的大小為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我市某商業(yè)公司為全面激發(fā)每一位職工工作的積極性、創(chuàng)造性,確保2017年超額完成銷售任務(wù),向黨的十九大獻禮.年初該公司制定了一個激勵銷售人員的獎勵方案:每季度銷售利潤不超過15萬元時,則按其銷售利潤的進行獎勵;當(dāng)季銷售利潤超過15萬元時,若超過部分為萬元,則超出部分按進行獎勵,沒超出部分仍按季銷售利潤的進行獎勵.記獎金總額為 (單位:萬元),季銷售利潤為 (單位:萬元).

(Ⅰ)請寫出該公司激勵銷售人員的獎勵方案的函數(shù)表達式;

(Ⅱ)如果業(yè)務(wù)員李明在本年的第三季度獲得5.5萬元的獎金,那么,他在該季度的銷售利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解心肺疾病是否與性別有關(guān),在市第一人民醫(yī)院隨機對入院50人進行了問卷調(diào)查,得到了如表的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計

5

10

合計

50

已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為.

(1)請將上面的列聯(lián)表補充完整;

(2)是否有99%的把握認為患心肺疾病與性別有關(guān)?說明你的理由.

參考格式: ,其中.

下面的臨界值僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了宣傳環(huán)保知識,舉辦了一次“環(huán)保知識知多少”的問卷調(diào)查活動(一

人答一份).現(xiàn)從回收的年齡在20~60歲的問卷中隨機抽取了100份,統(tǒng)計結(jié)果如下面的圖表所示.

年齡

分組

抽取份數(shù)

答對全卷

的人數(shù)

答對全卷的人數(shù)

占本組的概率

[20,30)

40

28

0.7

[30,40)

27

0.9

[40,50)

10

4

[50,60]

20

0.1

(1)分別求出 , 的值;

(2)從年齡在答對全卷的人中隨機抽取2人授予“環(huán)保之星”,求年齡在的人中至少有1人被授予“環(huán)保之星”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知2件次品和3件正品放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時檢測結(jié)果.

1求第一次檢測出的是次品且第二次檢測出的是正品的概率;

2已知每檢測一件產(chǎn)品需要費用100元,設(shè)X表示直到檢測出2件次品或者檢測出3件正品時所需要的檢測費用(單位:元),求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點, 軸的正半軸為極軸,與直角坐標(biāo)系取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)化曲線的方程為普通方程,并說明它們分別表示什么曲線;

(2)設(shè)曲線軸的一個交點的坐標(biāo)為,經(jīng)過點作斜率為1的直線, 交曲線兩點,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的頂點在坐標(biāo)原點,焦點軸上,過點的直線交拋物線于兩點,線段的長度為8, 的中點到軸的距離為3.

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)設(shè)直線軸上的截距為6,且拋物線交于兩點,連結(jié)并延長交拋物線的準(zhǔn)線于點,當(dāng)直線恰與拋物線相切時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市要建成宜商、宜居的國際化新城,該城市的東城區(qū)、西城區(qū)分別引進8個廠家,現(xiàn)對兩個區(qū)域的16個廠家進行評估,綜合得分情況如莖葉圖所示.

(1)根據(jù)莖葉圖判斷哪個區(qū)域廠家的平均分較高;

(2)規(guī)定85分以上(含85分)為優(yōu)秀廠家,若從該兩個區(qū)域各選一個優(yōu)秀廠家,求得分差距不超過5分的概率.

查看答案和解析>>

同步練習(xí)冊答案