設函數(shù),其中
(1)討論在其定義域上的單調性;
(2)當時,求取得最大值和最小值時的的值.
(1)內單調遞減,在內單調遞增;(2)所以當時,處取得最小值;當時,處同時取得最小只;當時,處取得最小值.

試題分析:(1)對原函數(shù)進行求導,,令,解得,當;從而得出,當時,.故內單調遞減,在內單調遞增.(2)依據(jù)第(1)題,對進行討論,①當時,,由(1)知,上單調遞增,所以處分別取得最小值和最大值.②當時,.由(1)知,上單調遞增,在上單調遞減,因此處取得最大值.又,所以當時,處取得最小值;當時,處同時取得最小只;當時,處取得最小值.
(1)的定義域為,.令,得,所以.當;當時,.故內單調遞減,在內單調遞增.
因為,所以.
①當時,,由(1)知,上單調遞增,所以處分別取得最小值和最大值.②當時,.由(1)知,上單調遞增,在上單調遞減,因此處取得最大值.又,所以當時,處取得最小值;當時,處同時取得最小只;當時,處取得最小值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

己知函數(shù)處的切線斜率為.
(1)求實數(shù)的值及函數(shù)的單調區(qū)間;
(2)設,對使得恒成立,求正實數(shù)的取值范圍;
(3)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù),其中.
(1)求函數(shù)的定義域(用區(qū)間表示);
(2)討論函數(shù)上的單調性;
(3)若,求上滿足條件的集合(用區(qū)間表示).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),.若
(1)求的值;
(2)求的單調區(qū)間及極值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)函數(shù)處取得極值1.
(1)求實數(shù)b,c的值;
(2)求在區(qū)間[-2,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),其中a為常數(shù).
(1)若當恒成立,求a的取值范圍;
(2)求的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)
(1)求的單調增區(qū)間;
(2)時,函數(shù)有三個互不相同的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設三次函數(shù)的導函數(shù)為,函數(shù)的圖象的一部分如下圖所示,則(     )
A.極大值為,極小值為
B.極大值為,極小值為
C.極大值為,極小值為
D.極大值為,極小值為

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2-alnx(a∈R).
(1)若函數(shù)f(x)的圖象在x=2處的切線方程為y=x+b,求a,b的值;
(2)若函數(shù)f(x)在(1,+∞)上為增函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習冊答案