已知函數(shù)f(x)=xsinx,對(duì)于[-
π
2
π
2
]
上的任意x1,x2,有如下條件:
x21
x22
;②x1>x2;③x1>x2,且
x1+x2
2
>0
.其中能使f(x1)>f(x2)恒成立的條件序號(hào)是______.(寫(xiě)出所有滿(mǎn)足條件的序號(hào))
由已知得f(x)是偶函數(shù),且在區(qū)間[-
π
2
,0]上遞減,在[0,
π
2
]上遞增,
作出函數(shù)的草圖,如圖所示:
由圖象可知,f(x1)>f(x2)?|x1|>|x2|,即x12>x22.故①符合,②不符合;
由x1>x2,且
x1+x2
2
>0
,知x1>0,
若x2>0,則顯然f(x1)>f(x2)成立;
若x2<0,由x1+x2>0,得x1>-x2
即|x1|>|x2|,有f(x1)>f(x2)成立,故③符合;
故答案為:①③.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)函數(shù)f(x)是R上的減函數(shù),若f(m-1)>f(2m+1),則實(shí)數(shù)m的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(x)=
x2
1+x2
,則f(1)+f(2)+f(3)+f(4)+f(5)+f(
1
2
)+f(
1
3
)+f(
1
4
)+f(
1
5
)=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)f(x)=min{2
x
,|x-2|
},其中min{a,b}=
a,a≤b
b,a>b
,若動(dòng)直線y=m與函數(shù)y=f(x)的圖象有三個(gè)不同的交點(diǎn),它們的橫坐標(biāo)分別為x1,x2,x3,則x1•x2•x3的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=(2n-n2)x2n2-n,(n∈N*)在(0,+∞)是增函數(shù).
(1)求f(x)的解析式;
(2)設(shè)g(x)=
f2(x)+m2
f(x)
(m>0)
,試判斷g(x)在(0,+∞)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知是定義在R上的奇函數(shù),當(dāng)時(shí)(m為常數(shù)),則的值為( ).
A.B.6C.4D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知f(x)是定義在(-3,3)上的奇函數(shù),當(dāng)0<x<3時(shí),如圖所示,那么不等式f(x)cosx<0的解集是(   ).
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)f(x)的定義域?yàn)镽,若f(x+a)與f(x-a)都是奇函數(shù),則(  )
A.f(x)是偶函數(shù)B.f(x)是奇函數(shù)
C.f(x)=f(x+2a)D.f(x+3a)是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知f(x)=asinx+bx+c(a,b,c∈R),若f(0)=-2,f()=1,則f(-)=________.

查看答案和解析>>

同步練習(xí)冊(cè)答案