19.函數(shù)f(x)=$\frac{2}{x}$+8x+1在區(qū)間(0,+∞)內(nèi)的最小值是9.

分析 利用基本不等式求解函數(shù)的最小值即可.

解答 解:函數(shù)f(x)=$\frac{2}{x}$+8x+1≥2$\sqrt{\frac{2}{x}×8x}$+1=9.當(dāng)且僅當(dāng)x=$\frac{1}{2}$時取等號,
∵$\frac{1}{2}∈$(0,+∞),∴函數(shù)f(x)=$\frac{2}{x}$+8x+1在區(qū)間(0,+∞)內(nèi)的最小值是:9.
故答案為:9.

點評 本題考查基本不等式的應(yīng)用,函數(shù)的最小值的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.過P(5,4)作圓C:x2+y2-2x-2y-3=0的切線,切點分別為A,B.則四邊形PACB的面積是( 。
A.5B.10C.15D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=x2-4在[-2,2]上的最大值、最小值分別是( 。
A.0,-4B.4,0C.4,-2D.4,-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=$\frac{x}{\sqrt{1-{x}^{2}}}$的奇偶性為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.不等式組$\left\{\begin{array}{l}{|x-1|-3<0}\\{a-2x>0}\end{array}\right.$的解集為{x|-2<x<3},則實數(shù)a的取值范圍是( 。
A.a=4B.a=6C.a≤6D.a≥6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.$\frac{sin\frac{7π}{12}-cos\frac{49π}{12}}{cos\frac{π}{12}+cos\frac{7π}{12}-sin\frac{11π}{12}}$×sin$\frac{π}{4}$=(  )
A.$\frac{\sqrt{2}}{2}$B.-$\frac{\sqrt{2}}{2}$C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.?dāng)?shù)列{an}的通項公式an=2n-3×5-n,則其前n項和Sn=n2+n-$\frac{3}{4}$+$\frac{3}{4}×\frac{1}{{5}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前n項和Sn=$\frac{1}{2}$anan+1,n∈N*,且a1=1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{2n-1}{{2}^{{a}_{n}}}$(n∈N*),數(shù)列{bn}的前n項和為Tn,寫出Tn關(guān)于n表達(dá)式,并求滿足Tn>$\frac{5}{2}$時n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知2cos2α+3cosαsinα-3sin2α=1,α∈(-$\frac{3π}{2}$,-π),求:
(1)tanα;
(2)$\frac{2sinα-3cosα}{4sinα-9cosα}$.

查看答案和解析>>

同步練習(xí)冊答案