11.我國的神舟十一號飛船已于2016年10月17日7時30分在酒泉衛(wèi)星發(fā)射中心成功發(fā)射升空,并于19日凌晨,與天宮二號自動交會對接成功.如圖所示為飛船上某零件的三視圖,網(wǎng)格紙表示邊長為1的正方形,粗實線畫出的是該零件的三視圖,則該零件的體積為( 。
A.4B.8C.12D.20

分析 由已知中的三視圖可得:該幾何體是一個以俯視圖為底面的四棱錐,代入棱錐體積公式,可得答案.

解答 解:由已知中的三視圖可得:該幾何體是一個以俯視圖為底面的四棱錐,
底面面積S=2×6=12,高h=3,
故體積V=$\frac{1}{3}Sh$=12,
故選:C

點評 本題考查的知識點是棱錐的體積與表面積,簡單幾何體的三視圖,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知x1,x2是方程ex-mx=0的兩解,其中x1<x2,則下列說法正確的是( 。
A.x1x2-1>0B.x1x2-1<0C.x1x2-2>0D.x1x2-2<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知向量$\overrightarrow{m}$=(cos$\frac{x}{2}$,-1),$\overrightarrow{n}$=($\sqrt{3}$sin$\frac{x}{2}$,cos2$\frac{x}{2}$),設函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+$\frac{1}{2}$.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.對于數(shù)89,進行如下計算:82+92=145,12+42+52=42,42+22=20…,如此反復運算,則第2016次運算的結(jié)果是( 。
A.16B.37C.58D.89

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R,都有f(x+1)=f(x-1),當0≤x≤1時,f(x)=x2,若函數(shù)y=f(x)-x-a在[0,2]內(nèi)有三個不同的零點,則實數(shù)a的取值范圍為$-\frac{1}{4}<a<0$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知y=xcosx,則y′=$\frac{1}{2}sin2x•{x}^{cosx-1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.數(shù)列{an}的前n項和為Sn=10n-n2,求數(shù)列{|an|}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設f0(x)=cosx,f1(x)=f′0(x),f2(x)=f′1(x),fn+1(x)=f′n(x)(n∈N),則f2012(x)=( 。
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知定點F($\sqrt{2}$,0),定直線l:x=2$\sqrt{2}$,動點P到定點F距離是它到定直線l距離的$\frac{\sqrt{2}}{2}$倍.設動點P的軌跡為曲線E.
(1)求曲線E的方程.
(2)過點(1,0)的直線l與曲線E交與不同的兩點M,N,點A為曲線E的右頂點,當△AMN的面積為$\frac{\sqrt{10}}{3}$時,求直線l的方程.

查看答案和解析>>

同步練習冊答案