精英家教網 > 高中數學 > 題目詳情

【題目】20191018-27日,第七屆世界軍人運動會在湖北武漢舉辦,中國代表團共獲得1336442銅,共239枚獎牌.為了調查各國參賽人員對主辦方的滿意程度,研究人員隨機抽取了500名參賽運動員進行調查,所得數據如下所示,現有如下說法:①在參與調查的500名運動員中任取1人,抽到對主辦方表示滿意的男性運動員的概率為;②在犯錯誤的概率不超過1%的前提下可以認為是否對主辦方表示滿意與運動員的性別有關;③沒有99.9%的把握認為是否對主辦方表示滿意與運動員的性別有關;則正確命題的個數為( )附:

男性運動員

女性運動員

對主辦方表示滿意

200

220

對主辦方表示不滿意

50

30

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

A.0B.1C.2D.3

【答案】B

【解析】

依次判斷每個選項:計算概率為得到①錯誤;計算得到②錯,③對得到答案.

任取1名參賽人員,抽到對主辦方表示滿意的男性運動員的概率為,故①錯誤;,故②錯,③對

故選:B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】為慶祝新中國成立70周年,某市工會組織部分事業(yè)單位職工舉行“迎國慶,廣播操比賽”活動.現有200名職工參與了此項活動,將這200人按照年齡(單位:歲)分組:第一組[15,25),第二組[2535),第三組[3545),第四組[45,55),第五組[55,65],得到的頻率分布直方圖如圖所示.記事件A為“從這200人中隨機抽取一人,其年齡不低于35歲”,已知PA)=0.75.

1)求的值;

2)在第二組、第四組中用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人作為活動的負責人,求這2人恰好都在第四組中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在①;這兩個條件中任選-一個,補充在下面問題中,然后解答補充完整的題.

中,角的對邊分別為,已知 .

(1);

(2)如圖,為邊上一點,,求的面積

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,平面,的中點,,,.

(Ⅰ)求證:平面

(Ⅱ)求平面與平面所成銳二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某調查機構對全國互聯網行業(yè)進行調查統計,得到整個互聯網行業(yè)從業(yè)者年齡分布餅狀圖和90后從事互聯網行業(yè)者崗位分布圖(90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生),則下列結論中不一定正確的是(

整個互聯網行業(yè)從業(yè)者年齡分布餅狀圖 90后從事互聯網行業(yè)者崗位分布圖

A.互聯網行業(yè)從業(yè)人員中90后占一半以上

B.互聯網行業(yè)中從事技術崗位的人數90后比80后多

C.互聯網行業(yè)中從事設計崗位的人數90后比80前多

D.互聯網行業(yè)中從事市場崗位的90后人數不足總人數的10%

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】談祥柏先生是我國著名的數學科普作家,他寫的《數學百草園》、《好玩的數學》、《故事中的數學》等書,題材廣泛、妙趣橫生,深受廣大讀者喜愛.下面我們一起來看《好玩的數學》中談老的一篇文章《五分鐘內挑出埃及分數》:文章首先告訴我們,古埃及人喜歡使用分子為1的分數(稱為埃及分數).如用兩個埃及分數的和表示.100個埃及分數中挑出不同的3個,使得它們的和為1,這三個分數是________.(按照從大到小的順序排列)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】是一個集合,是一個以的某些子集為元素的集合,且滿足:(1屬于,屬于;(2中任意多個元素的并集屬于;(3中任意多個元素的交集屬于,則稱是集合上的一個拓補.已知集合,對于下面給出的四個集合

其中是集合上的拓補的集合的序號是______.(寫出所有的拓補的集合的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列的前項和記為若對任意的正整數n,總存在正整數m,使得,則稱H數列

1)若數列的通項公式,判斷是否為H數列;

2)等差數列,公差,,求證:H數列;

3)設點在直線上,其中,.若H數列,求滿足的條件.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如題所示:扇形ABC是一塊半徑為2千米,圓心角為60°的風景區(qū),P點在弧BC上,現欲在風景區(qū)中規(guī)劃三條三條商業(yè)街道PQQR、RP,要求街道PQAB垂直,街道PRAC垂直,直線PQ表示第三條街道。

(1)如果P位于弧BC的中點,求三條街道的總長度;

(2)由于環(huán)境的原因,三條街道PQ、PRQR每年能產生的經濟效益分別為每千米300萬元、200萬元及400萬元,問:這三條街道每年能產生的經濟總效益最高為多少?(精確到1萬元)

查看答案和解析>>

同步練習冊答案