18.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且關(guān)于x的不等式x2-(a2+bc)x+m<0(m∈R)解集為(b2,c2).
(1)求角A的大;
(2)若a=$\sqrt{6}$,設(shè)B=θ,△ABC的周長為y,求y=f(θ)的取值范圍.

分析 (1)由題意,利用一元二次方程根與系數(shù)的關(guān)系可求b2+c2=a2+bc,利用余弦定理可求cosA的值,結(jié)合A∈(0,π),即可得解A的值.
(2)由正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡可得y=$2\sqrt{6}sin(θ+\frac{π}{6})+\sqrt{6}$,利用大邊對(duì)大角可求范圍$B<\frac{π}{3}$,進(jìn)而可求$\frac{π}{6}<θ+\frac{π}{6}<\frac{π}{2}$,利用正弦函數(shù)的圖象和性質(zhì)可求其取值范圍.

解答 解:(1)在△ABC中,由題意得:b2+c2=a2+bc,
∴$cosA=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}=\frac{1}{2}$,
又A∈(0,π),
∴$A=\frac{π}{3}$.
(2)由$a=\sqrt{6}$,$A=\frac{π}{3}$及正弦定理得:$\frac{sinB}=\frac{c}{sinC}=\frac{a}{sinA}=2\sqrt{2}$,
∴$b=2\sqrt{2}sinB=2\sqrt{2}sinθ$,$c=2\sqrt{2}sinC=2\sqrt{2}sin(\frac{2π}{3}-θ)$,
故$y=a+b+c=\sqrt{6}+2\sqrt{2}sinθ+2\sqrt{2}sin(\frac{2π}{3}-θ)$=$2\sqrt{6}sin(θ+\frac{π}{6})+\sqrt{6}$,
∵b<c,
∴$B<C=\frac{2π}{3}-B$,
∴$B<\frac{π}{3}$,
故$0<θ<\frac{π}{3}$,得$\frac{π}{6}<θ+\frac{π}{6}<\frac{π}{2}$,
∴$\frac{1}{2}<sin(θ+\frac{π}{6})<1$,
∴$y∈(2\sqrt{6},3\sqrt{6})$.

點(diǎn)評(píng) 本題主要考查了一元二次方程根與系數(shù)的關(guān)系,余弦定理,正弦定理,三角函數(shù)恒等變換的應(yīng)用,大邊對(duì)大角可,正弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.命題“?x∈R,都有|sinx|<1”的否定是( 。
A.?x∈R,都有|sinx|>1B.?x∈R,都有|sinx|≥1C.?x∈R,使|sinx|>1D.?x∈R,使|sinx|≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=$\sqrt{3}$x+$\sqrt{3}$的傾斜角的2倍,求直線l的點(diǎn)斜式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若x>0,y>0,且y+9x=xy,則x+y的最小值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=$\sqrt{3}$sinx-acosx 的圖象的一條對(duì)稱軸是x=$\frac{5π}{3}$,則g(x)=asinx+cosx=Asin(ωx+φ)(A>0,ω>0)的一個(gè)初相是( 。
A.-$\frac{3π}{4}$B.-$\frac{π}{4}$C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線l的點(diǎn)斜式方程為y+2=$\sqrt{3}$(x+1),則此直線的傾斜角為(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=$\frac{{x}^{2}+1}{x}$的奇偶性為( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)又不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列.
(Ⅰ)求數(shù)列{an},的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn},滿足bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求證:b1+b2+b3+…+bn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖所示的流程圖的功能是(  )
A.輸出a,b,c的最大值B.輸出a,b,c的最小值
C.將a,b,c從大到小排列D.將a,b,c從小到大排列

查看答案和解析>>

同步練習(xí)冊答案