計算:
C
1
9
C
1
9
C
1
18
C
3
36
+
C
1
9
C
2
9
C
3
36
考點:組合及組合數(shù)公式
專題:計算題,排列組合
分析:根據(jù)組合數(shù)的公式進行計算即可.
解答: 解:
C
1
9
C
1
9
C
1
18
C
3
36
+
C
1
9
C
2
9
C
3
36
=
9×9×18
36×35×34
1×2×3
+
9×8
1×2
36×35×34
1×2×3

=
9×9×18
6×35×34
+
9×9×4
6×35×34

=
9×9×22
6×35×34

=
9×3×11
35×34

=
297
1190
點評:本題考查了組合數(shù)公式的應用問題,是計算題目.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
1
3
x3+
1
2
ax2+2bx+c,f(x)在x=x1時取得極大值,在x=x2時取得極小值,且x1∈(0,1),x2∈(1,2),則
b-2
a-1
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線y=2x,曲線y=2-x,直線x=-1與直線x=1所圍成的封閉圖形的面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

3+33+333+…+
33…3
n個
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對正整數(shù)n記f(n)為數(shù)3n2+n+1的十進制表示的數(shù)碼和.求f(n)最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

分別指出由下列各組命題構成的“p∧q”,“p∨q“,“非p“命題的真假.
①p:-4<0;q:4>0;
②p:25是5的倍數(shù);q:25是4的倍數(shù);
③p:2是x+1=0的根;q:-1是x+1=0的根;
④p:∅=0;q:∅={0}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x)在(0,+∞)上單調遞增,且f(1)=0,當f(lgt)<0時,則t的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2
sinx
1+cos2x-sin2x

(1)求函數(shù)的定義域;
(2)用定義判斷f(x)的奇偶性;
(3)在[-π,π]上作出f(x)的圖象;
(4)寫出f(x)的最小正周期及單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示是一個幾何體的三視圖,則該幾何體的體積為( 。
A、8+2πB、16+2π
C、8+πD、16+π

查看答案和解析>>

同步練習冊答案