定義在R上的函數(shù)f(x)滿足:對任意實數(shù)m,n,總有f(m+n)=f(m)•f(n),且當x>0時,0<f(x)<1.
(1)試求f(0)的值;
(2)判斷f(x)的單調(diào)性并證明你的結(jié)論;
(3)若不等式f[(t-2)(|x-4|-|x+4|)]>f(t2-4t+13)對t∈[4,6]恒成立,求實數(shù)x的取值范圍.
【答案】
分析:(1)令m=1,n=0,可求出f(0),(2)根據(jù)單調(diào)性的定義證明函數(shù)的單調(diào)性,(3)根據(jù)(2)的結(jié)論,去掉對應(yīng)法則f,把f[(t-2)(|x-4|-|x+4|)]>f(t
2-4t+13)轉(zhuǎn)化不等式為(t-2)(|x-4|-|x+4|)<t
2-4t+13,達到求解目的.
解答:解:(1)令m=1,n=0,則f(1)=f(1)f(0),又0<f(1)<1,故f(0)=1
(2)當x<0時,-x>0,則
即對任意x∈R都有f(x)>0
對于任意x
1>x
2,
即f(x)在R上為減函數(shù).
(3)∵y=f(x)為R上的減函數(shù)
∴f[(t-2)(|x-4|-|x+4|)]>f(t
2-4t+13)
?(t-2)(|x-4|-|x+4|)<t
2-4t+13?
由題意知,
而
∴須|x-4|-|x+4|<6,解不等式得x>-3
所以原不等式的解集為:{x:x>-3}.
點評:抽象函數(shù)求某點的函數(shù)值,通常采取賦值法解決;對于抽象函數(shù)的單調(diào)性,奇偶性的判定,一般采取定義解決,對于不等式恒成立的問題,分離參數(shù)是首選方法,此題難度較大,綜合性強,屬難題.