【題目】設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且滿(mǎn)足sinA+sinB=[cosA﹣cos(π﹣B)]sinC.
(1)試判斷△ABC的形狀,并說(shuō)明理由;
(2)若a+b+c=1+ ,試求△ABC面積的最大值.
【答案】
(1)解:∵sinA+sinB=[cosA﹣cos(π﹣B)]sinC,
∴sinA+sinB=(cosA+cosB)sinC,
由正弦定理和余弦定理得,
a+b=( + )c,
化簡(jiǎn)得,2a2b+2ab2=ab2+ac2﹣a3+ba2+bc2﹣b3
a2b+ab2=ac2﹣a3+bc2﹣b3,
(a+b)(a2+b2﹣c2)=0,
又a+b>0,∴a2+b2﹣c2=0,即a2+b2=c2,
∴△ABC為直角三角形,且∠C=90°
(2)解:∵a+b+c=1+ ,a2+b2=c2,
∴1+ =a+b+ ≥2 + =(2+ )
當(dāng)且僅當(dāng)a=b時(shí)上式等號(hào)成立,則 ≤ = ,
∴S△ABC= ab≤ × = ,
即△ABC面積的最大值為
【解析】(1)由誘導(dǎo)公式、正弦定理和余弦定理化簡(jiǎn)已知的式子,化簡(jiǎn)后由邊的關(guān)系判斷出三角形的形狀;(2)由(1)和條件化簡(jiǎn)后,由基本不等式化簡(jiǎn)求出 的范圍,表示三角形的面積,即可求出答案.
【考點(diǎn)精析】利用正弦定理的定義和余弦定理的定義對(duì)題目進(jìn)行判斷即可得到答案,需要熟知正弦定理:;余弦定理:;;.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為,(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求直線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)是曲線(xiàn)上的一個(gè)動(dòng)點(diǎn),求它到直線(xiàn)的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線(xiàn)E: =1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2 , P是E坐支上一點(diǎn),且|PF1|=|F1F2|,直線(xiàn)PF2與圓x2+y2=a2相切,則E的離心率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 兩個(gè)變量的相關(guān)關(guān)系一定是線(xiàn)性相關(guān)
B. 兩個(gè)隨機(jī)變量的線(xiàn)性相關(guān)線(xiàn)越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于0
C. 在回歸直線(xiàn)方程中,當(dāng)解釋變量每增加1個(gè)單位時(shí),預(yù)報(bào)變量平均增加1個(gè)單位
D. 對(duì)分類(lèi)變量與,隨機(jī)變量的觀(guān)測(cè)值越大,則判斷“與有關(guān)系”的把握程度越大
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種商品在天內(nèi)每件的銷(xiāo)售價(jià)格(元)與時(shí)間()(天)的函數(shù)關(guān)系滿(mǎn)足函數(shù),該商品在天內(nèi)日銷(xiāo)售量(件)與時(shí)間()(天)之間滿(mǎn)足一次函數(shù)關(guān)系如下表:
第天 | ||||
件 |
(1)根據(jù)表中提供的數(shù)據(jù),確定日銷(xiāo)售量與時(shí)間的一次函數(shù)關(guān)系式;
(2)求該商品的日銷(xiāo)售金額的最大值并指出日銷(xiāo)售金額最大的一天是天中的第幾天,(日銷(xiāo)售金額每件的銷(xiāo)售價(jià)格日銷(xiāo)售量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 =1(a>b>0)上的點(diǎn)到右焦點(diǎn)F的最小距離是 ﹣1,F(xiàn)到上頂點(diǎn)的距離為 ,點(diǎn)C(m,0)是線(xiàn)段OF上的一個(gè)動(dòng)點(diǎn).
(1)求橢圓的方程;
(2)是否存在過(guò)點(diǎn)F且與x軸不垂直的直線(xiàn)l與橢圓交于A(yíng)、B兩點(diǎn),使得( + )⊥ ,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把函數(shù)y=sin(2x﹣ )的圖象向左平移 個(gè)單位后,所得函數(shù)圖象的一條對(duì)稱(chēng)軸為( )
A.x=0
B.x=
C.x=
D.x=﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝批發(fā)市場(chǎng)1-5月份的服裝銷(xiāo)售量與利潤(rùn)的統(tǒng)計(jì)數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
銷(xiāo)售量 (萬(wàn)件) | 3 | 6 | 4 | 7 | 8 |
利潤(rùn) (萬(wàn)元) | 19 | 34 | 26 | 41 | 46 |
(1)從這五個(gè)月的利潤(rùn)中任選2個(gè),分別記為, ,求事件“, 均不小于30”的概率;
(2)已知銷(xiāo)售量與利潤(rùn)大致滿(mǎn)足線(xiàn)性相關(guān)關(guān)系,請(qǐng)根據(jù)前4個(gè)月的數(shù)據(jù),求出關(guān)于的線(xiàn)性回歸方程;
(3)若由線(xiàn)性回歸方程得到的利潤(rùn)的估計(jì)數(shù)據(jù)與真實(shí)數(shù)據(jù)的誤差不超過(guò)2萬(wàn)元,則認(rèn)為得到的利潤(rùn)的估計(jì)數(shù)據(jù)是理想的.請(qǐng)用表格中第5個(gè)月的數(shù)據(jù)檢驗(yàn)由(2)中回歸方程所得的第5個(gè)月的利潤(rùn)的估計(jì)數(shù)據(jù)是否理想.參考公式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知橢圓C: + =1(a>b>0)的焦距為2,直線(xiàn)y=x被橢圓C截得的弦長(zhǎng)為 .
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)M(x0 , y0)是橢圓C上的動(dòng)點(diǎn),過(guò)原點(diǎn)O引兩條射線(xiàn)l1 , l2與圓M:(x﹣x0)2+(y﹣y0)2= 分別相切,且l1 , l2的斜率k1 , k2存在.
①試問(wèn)k1k2是否定值?若是,求出該定值,若不是,說(shuō)明理由;
②若射線(xiàn)l1 , l2與橢圓C分別交于點(diǎn)A,B,求|OA||OB|的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com