【題目】已知橢圓的左、右焦點(diǎn)分別為
,
,點(diǎn)
是橢圓的一個(gè)頂點(diǎn),
是等腰直角三角形.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)分別作直線
,
交橢圓于
,
兩點(diǎn),設(shè)兩直線的斜率分別為
,
,且
,證明:直線
過(guò)定點(diǎn)
.
【答案】(1);(2)證明見(jiàn)解析
【解析】
(1)由橢圓的頂點(diǎn)坐標(biāo)可直接得,根據(jù)△
是等腰直角三角形可得
,進(jìn)而由橢圓方程中
的關(guān)系即可得橢圓方程;
(2)分類討論直線的斜率不存在和直線斜率存在兩種情況:當(dāng)斜率存在時(shí),設(shè)出直線方程,并聯(lián)立橢圓后,設(shè),
,由韋達(dá)定理表示出
,根據(jù)斜率關(guān)系
,整理可得
與
的等量關(guān)系,代入直線方程即可確定直線AB過(guò)定點(diǎn).當(dāng)斜率不存在時(shí),易證也過(guò)該定點(diǎn)即可.
(1)由已知可得,
是等腰直角三角形可得
,
由,
則所求橢圓方程為.
(2)若直線的斜率存在,設(shè)
方程為
,依題意
.
設(shè),
,
由得
.
則.
由已知,
所以,即
.
所以,整理得
.
故直線的方程為
,即
.
所以直線過(guò)定點(diǎn)
.
若直線的斜率不存在,設(shè)
方程為
,
設(shè),
,由已知
,
得.此時(shí)
方程為
,顯然過(guò)點(diǎn)
.
綜上,直線過(guò)定點(diǎn)
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的不等式
的解集為
,求實(shí)數(shù)
的值;
(2)設(shè),若不等式
對(duì)
都成立,求實(shí)數(shù)
的取值范圍;
(3)若且
時(shí),求函數(shù)
的零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的直角坐標(biāo)方程和直線
的普通方程;
(2)若直線與曲線
交于
、
兩點(diǎn),設(shè)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓(
)的左、右焦點(diǎn)分別是
,
,點(diǎn)
為
的上頂點(diǎn),點(diǎn)
在
上,
,且
.
(1)求的方程;
(2)已知過(guò)原點(diǎn)的直線與橢圓
交于
,
兩點(diǎn),垂直于
的直線
過(guò)
且與橢圓
交于
,
兩點(diǎn),若
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中華人民共和國(guó)道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過(guò)人行道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”, 《中華人民共和國(guó)道路交通安全法》第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數(shù) | 120 | 105 | 100 | 90 | 85 |
(1)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)與月份
之間的回歸直線方程
;
(2)預(yù)測(cè)該路口9月份的不“禮讓斑馬線”違章駕駛員人數(shù).
參考公式: ,
.
參考數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若存在實(shí)數(shù)使得
則稱
是區(qū)間
的
一內(nèi)點(diǎn).
(1)求證:的充要條件是存在
使得
是區(qū)間
的
一內(nèi)點(diǎn);
(2)若實(shí)數(shù)滿足:
求證:存在
,使得
是區(qū)間
的
一內(nèi)點(diǎn);
(3)給定實(shí)數(shù),若對(duì)于任意區(qū)間
,
是區(qū)間的
一內(nèi)點(diǎn),
是區(qū)間的
一內(nèi)點(diǎn),且不等式
和不等式
對(duì)于任意
都恒成立,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列滿足
,其中
,且
,
為常數(shù).
(1)若是等差數(shù)列,且公差
,求
的值;
(2)若,且存在
,使得
對(duì)任意的
都成立,求
的最小值;
(3)若,且數(shù)列
不是常數(shù)列,如果存在正整數(shù)
,使得
對(duì)任意的
均成立. 求所有滿足條件的數(shù)列
中
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓,其長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的
倍,過(guò)焦點(diǎn)且垂直于
軸的直線被橢圓截得的弦長(zhǎng)為
.
(1)求橢圓的方程;
(2)點(diǎn)是橢圓
上橫坐標(biāo)大于
的動(dòng)點(diǎn),點(diǎn)
在
軸上,圓
內(nèi)切于
,試判斷點(diǎn)
在何位置時(shí)
的長(zhǎng)度最小,并證明你的判斷.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若數(shù)列滿足,存在實(shí)數(shù)
,對(duì)任意
,都有
,則稱數(shù)列
有上界,
是數(shù)列
的一個(gè)上界,已知定理:?jiǎn)握{(diào)遞增有上界的數(shù)列收斂(即極限存在).
(1)數(shù)列是否存在上界?若存在,試求其所有上界中的最小值;若不存在,請(qǐng)說(shuō)明理由;
(2)若非負(fù)數(shù)列滿足
,
(
),求證:1是非負(fù)數(shù)列
的一個(gè)上界,且數(shù)列
的極限存在,并求其極限;
(3)若正項(xiàng)遞增數(shù)列無(wú)上界,證明:存在
,當(dāng)
時(shí),恒有
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com