1.在某樣本的頻率分布直方圖中,共有7個小長方形,若第三個小長方形的面積為其他6個小長方形的面積和的$\frac{1}{4}$,且樣本容量為100,則第三組數(shù)據(jù)的頻數(shù)為( 。
A.25B.0.2C.0.25D.20

分析 根據(jù)頻率分布直方圖中頻率和為1,列出方程求出第三組的頻率與頻數(shù)即可.

解答 解:根據(jù)題意,設(shè)第三個小長方形的面積(頻率)為x,
則其它6個小長方形的面積和為4x,
∴x+4x=1;
解得x=$\frac{1}{5}$,
∵樣本容量為100,
∴第三組的頻數(shù)為100×$\frac{1}{5}$=20.
故選:D.

點評 本題考查了頻率分布直方圖的應(yīng)用問題,解題時利用頻率和為1,結(jié)合頻率=$\frac{頻數(shù)}{樣本容量}$進行解答,是基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若定義在x∈(-∞,0)∪(0,+∞)的偶函數(shù)y=f(x)在(-∞,0)上的解析式為$f(x)=ln(-\frac{1}{x})$,則函數(shù)y=f(x)的圖象在點(2,f(2))處的切線斜率為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,斜三棱柱ABC-A1B1C1的底面是邊長為4的正三角形,D是BC的中點,A1D⊥平面ABC.
(1)求證:BC⊥A1A;
(2)若A1A=6,求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)莖葉圖如圖所示,若眾數(shù)為c,則c=( 。
A.12B.14C.15D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}中,公差d>0,且滿足:a2•a3=45,a1+a4=14.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列$\left\{{\frac{1}{{{a_n}•{a_{n+1}}}}}\right\}$的前n項和為Sn,令f(n)=$\frac{S_n}{n+16}$(n∈N*),求f(n)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)數(shù)列{an}滿足a1=0,且2an+1=1+anan+1,bn=$\frac{1}{{\sqrt{n}}}-\sqrt{\frac{{{a_{n+1}}}}{n}}$,記Sn=b1+b2+…+bn,則S100=( 。
A.$1-\frac{1}{{\sqrt{101}}}$B.$\frac{9}{10}$C.$\frac{99}{100}$D.$\frac{1}{10}-\frac{1}{{\sqrt{101}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=-x+b的圖象過點(2,1),若不等式f(x)≥x2+x-5的解集為A,且A⊆(-∞,a].
(1)求a的取值范圍;
(2)解不等式$\frac{{{x^2}-(a+3)x+2a+3}}{f(x)}$<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=$\sqrt{x+3}$+$\frac{1}{lg(x+1)}$的定義域是( 。
A.(-1,0)∪(0,+∞)B.[-3,+∞)C.[-3,-1)∪(-1,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知圓C:x2+y2-8x-8y+30=0,過曲線y=$\frac{1}{x}(x>0)$上的點P作圓C的切線,設(shè)點A為一個切點,則|PA|的最小值是2$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案