【題目】下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的為( )
A. B. C. D. y=ln
【答案】B
【解析】
要判斷函數(shù)是否為奇函數(shù),只要檢驗(yàn)f(﹣x)=﹣f(x)是否成立即可;然后再根據(jù)函數(shù)單調(diào)性的定義進(jìn)行判斷即可.
由奇函數(shù)的性質(zhì)可知,
A:y=x+1為非奇非偶函數(shù),不符合條件;
B:y=f(x)=x|x|的定義域R,且f(﹣x)=﹣x|﹣x|=﹣x|x|=f(x),奇函數(shù)
y=x|x|=在R上單調(diào)遞增,故正確;
C:y=為奇函數(shù),但在(0,+∞),(﹣∞,0)上單調(diào)遞減,不符合題意;
D:y=ln的定義域(﹣1,1),f(x)=ln==﹣f(x),為奇函數(shù),而t===﹣1+在(﹣1,1)上單調(diào)遞減,根據(jù)復(fù)合函數(shù)的單調(diào)性可知,y=ln在(﹣1,1)上單調(diào)遞增,不符合
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓的左、右焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為,若, 與軸垂直,且.
(1)求橢圓方程;
(2)過(guò)點(diǎn)且不垂直于坐標(biāo)軸的直線與橢圓交于兩點(diǎn),已知點(diǎn),當(dāng)時(shí),求滿足的直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 向量 =(Sn , 1), =(2n﹣1, ),滿足條件 ∥ ,
(1)求數(shù)列{an}的通項(xiàng)公式,
(2)設(shè)函數(shù)f(x)=( )x , 數(shù)列{bn}滿足條件b1=1,f(bn+1)= .
①求數(shù)列{bn}的通項(xiàng)公式,
②設(shè)cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,是中點(diǎn).
(1)求點(diǎn)到平面的距離;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái)城市“共享單車”的投放在我國(guó)各地迅猛發(fā)展,“共享單車”為人們出行提供了很大的便利,但也給城市的管理帶來(lái)了一些困難,現(xiàn)某城市為了解人們對(duì)“共享單車”投放的認(rèn)可度,對(duì)年齡段的人群隨機(jī)抽取人進(jìn)行了一次“你是否贊成投放共享單車”的問(wèn)卷調(diào)查,根據(jù)調(diào)查結(jié)果得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:
組號(hào) | 分組 | 贊成投放的人數(shù) | 贊成投放的人數(shù)占本組的頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 | |||
第六組 |
()求, , 的值.
()在第四、五、六組“贊成投放共享單車”的人中,用分層抽樣的方法抽取人參加“共享單車”騎車體驗(yàn)活動(dòng),求第四、五、六組應(yīng)分別抽取的人數(shù).
()在()中抽取的人中隨機(jī)選派人作為領(lǐng)隊(duì),求所選派的人中第五組至少有一人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(a>0且a≠1)是R上的單調(diào)函數(shù),則a的取值范圍是( )
A. (0,] B. [) C. [] D. (]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的右焦點(diǎn)為,右頂點(diǎn)為,已知,其中為坐標(biāo)原點(diǎn), 為橢圓的離心率.
(1)求橢圓的方程;
(2)是否存在斜率為2的直線,使得當(dāng)直線與橢圓有兩個(gè)不同交點(diǎn)時(shí),能在直線上找到一點(diǎn),在橢圓上找到一點(diǎn),滿足?若存在,求出直線的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a+b=1,對(duì)a,b∈(0,+∞), + ≥|2x﹣1|﹣|x+1|恒成立,
(1)求 + 的最小值;
(2)求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,滿足2acosB=2c﹣b.
(1)求角A;
(2)若△ABC的面積為 ,且a= ,請(qǐng)判斷△ABC的形狀,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com