定義在R上的函數(shù)f(x)滿足對于任意實數(shù)x,y都有f(x+y)=f(x)+f(y),且當x>0時,f(x)<0,f(1)=-2.
(1)判斷f(x)的奇偶性并證明;
(2)判斷f(x)的單調性,并求當x∈[-3,3]時,f(x)的最大值及最小值;
(3)在b>
2
的條件下解關于x的不等式
1
2
f(bx2)-f(x)>
1
2
f(b2x)-f(b)
分析:(1)可在恒等式中令x=y=0,即可解出f(0)=0,由奇函數(shù)的定義知,需要證明出f(-x)=-f(x),觀察恒等式發(fā)現(xiàn)若令y=-x,則問題迎刃而解;
(2)由題設條件對任意x1、x2在所給區(qū)間內比較f(x2)-f(x1)與0的大小即可得出f(x)在R上是減函數(shù),再根據(jù)單調性得出函數(shù)的最值即可.
(3)不等式可化為:
f(bx2)-2f(x)>f(b2x)-2f(b).
再利用題中條件得到2f(x)=f(x)+f(x)=f(2x),結合函數(shù)的單調性,將前不等式化成二次不等式,再解之即得.
解答:解:(1)令x=y=0,得f(0)=f(0)+f(0),∴f(0)=0.…(1分)
再令y=-x,得f(0)=f(x)+f(-x)=0.∴f(-x)=-f(x).
∴f(x)為奇函數(shù).…(3分)
(2)任取x1<x2,則x2-x1>0.∴由已知得f(x2-x1)<0.
∴f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2)=-f(x2-x1)>0.
∴f(x1)>f(x2),∴f(x)在R上是減函數(shù).…(6分)
∴當x∈[-3,3]時,f(3)≤f(x)≤f(-3).

∵f(3)=f(2)+f(1)=3f(1)=-6,
f(-3)=-f(3)=6.
∴當x∈[-3,3]時,f(x)max=6,f(x)min=-6.…(8分)
(3)不等式可化為:
f(bx2)-2f(x)>f(b2x)-2f(b).

而2f(x)=f(x)+f(x)=f(2x),
f(bx2)-f(2x)>f(b2x)-f(2b).

f(bx2-2x)>f(b2x-2b).

∵y=f(x)在R上是減函數(shù),
bx2-2x<b2x-2b,即bx2-(2+b2)x+2b<0…①…(10分)
當b>
2
>0時,①得(x-b)(x-
2
b
)<0
;
當b>
2
時,
2
b
<b
,此時解集為{x|
2
b
<x<b
}.…(12分)
點評:本題考點是抽象函數(shù)及其應用,考查用賦值法求函數(shù)值證明函數(shù)的奇偶性,以及靈活利用所給的恒等式證明函數(shù)的單調性,此類題要求答題者有較高的數(shù)學思辨能力,能從所給的條件中組織出證明問題的組合來.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當x∈[0,
π
2
]時,f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

20、已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當x∈(0,4)時,f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個最低點之間距離為π,函數(shù)y=sin(2x+
π
3
)圖象所有對稱中心都在f(x)圖象的對稱軸上.
(1)求f(x)的表達式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
,
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對應值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數(shù)f(x)一定存在零點的區(qū)間是(  )

查看答案和解析>>

同步練習冊答案