8.已知圓C:(x-2)2+y2=3.
(Ⅰ)若過(guò)定點(diǎn)(-1,0)且傾斜角α=30°的直線l與圓C相交于A,B兩點(diǎn),求線段AB的中點(diǎn)P的坐標(biāo);
(Ⅱ)從圓C外一點(diǎn)P作圓C的一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且|PM|=|PO|,求使|PM|最小的點(diǎn)P的坐標(biāo).

分析 (I)設(shè)A(x1,y1),B(x2,y2).過(guò)定點(diǎn)(-1,0)且傾斜角為α=30°的直線l方程為y=$\frac{\sqrt{3}}{3}$(x+1).與圓的方程聯(lián)立化為關(guān)于x的一元二次方程的根與系數(shù)的關(guān)系,利用中點(diǎn)坐標(biāo)公式即可得出.
先(Ⅱ)確定P的軌跡方程,再利用要使|PM|最小,只要|PO|最小即可.

解答 解:(I)設(shè)A(x1,y1),B(x2,y2).
過(guò)定點(diǎn)(-1,0)且傾斜角為α=30°的直線l方程為y=$\frac{\sqrt{3}}{3}$(x+1).
代入圓方程可化為2x2-5x+2=0,
∴x1+x2=$\frac{5}{2}$,
∴xP=$\frac{5}{4}$,yP=$\frac{3\sqrt{3}}{4}$.
∴P($\frac{5}{4}$,$\frac{3\sqrt{3}}{4}$).
(Ⅱ)因?yàn)閨PO|2+r2=|PC|2,所以x12+y12+3=(x1-2)2+y12,即4x1-1=0.
要使|PM|最小,只要|PO|最小即可.
當(dāng)直線PO垂直于直線4x-1=0時(shí),得P點(diǎn)坐標(biāo)($\frac{1}{4}$,0).

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查學(xué)生分析解決問(wèn)題的能力,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知a=2${\;}^{-\frac{1}{3}}$,b=(2${\;}^{lo{g}_{2}3}$)${\;}^{-\frac{1}{2}}$,c=cos50°cos10°+cos140°sin170°,則實(shí)數(shù)a,b,c的大小關(guān)系是(  )
A.a>c>bB.b>c>aC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.直線$l:\frac{x}{2}+\frac{y}{3}=1$的斜率為( 。
A.$-\frac{2}{3}$B.$\frac{3}{2}$C.$\frac{2}{3}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.曲線y=sinx與直線x=-$\frac{π}{3}$,x=$\frac{π}{2}$及x軸所圍成的圖形的面積是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線方程為x+2y+1=0,則f(2)-2f′(2)的值為( 。
A.$\frac{1}{2}$B.1C.-1D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)函數(shù)$f(x)=\frac{{a{x^2}-b}}{x}$,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為7x-4y-12=0,則f(x)的解析式為f(x)=x-$\frac{3}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow$=(-cosx,cosx),$\overrightarrow{c}$=(-1,0).
(1)若x=$\frac{π}{6}$,求向量$\overrightarrow{a}$.$\overrightarrow{c}$.
(2)當(dāng)x∈[$\frac{π}{2}$,$\frac{9π}{8}$]時(shí),求f(x)=$\overrightarrow{a}$•$\overrightarrow$+1的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)函數(shù)y=f(x)可導(dǎo),則$\lim_{△x→0}\frac{f(1+3△x)-f(1)}{3△x}$等于( 。
A.f'(1)B.3f'(1)C.$\frac{1}{3}f'(1)$D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.某中學(xué)高一、高二、高三三個(gè)年級(jí)共有學(xué)生3000人,采用分層抽樣的方法從全體學(xué)生中抽取一個(gè)容量為60的樣本,已知高一年級(jí)學(xué)生為1 200人,則該年級(jí)抽取的學(xué)生數(shù)為( 。
A.20B.30C.24D.25

查看答案和解析>>

同步練習(xí)冊(cè)答案