已知函數(shù)f(x)=ax2+bx-a+2
(1)若關(guān)于x的不等式f(x)>0的解集是(-1,3),求實(shí)數(shù)a,b的值;
(2)若b=2,a>0,解關(guān)于x的不等式f(x)>0.

解:(1)∵不等式f(x)>0的解集是(-1,3)
∴-1,3是方程ax2+bx-a+2=0的兩根,
∴可得,解之得------------(5分)
(2)當(dāng)b=2時(shí),f(x)=ax2+2x-a+2=(x+1)(ax-a+2),
∵a>0,∴
①若,即a=1,解集為{x|x≠-1}.
②若,即0<a<1,解集為
③若,即a>1,解集為.------------(14分)
分析:(1)根據(jù)題意并結(jié)合一元二次不等式與一元二方程的關(guān)系,可得方程ax2+bx-a+2=0的兩根分別為-1和3,由此建立關(guān)于a、b的方程組并解之,即可得到實(shí)數(shù)a、b的值;
(2)不等式可化成(x+1)(ax-a+2)>0,由此討論-1與的大小關(guān)系,分3種情形加以討論,即可得到所求不等式的解集.
點(diǎn)評(píng):本題給出二次函數(shù),討論不等式不等式f(x)>0的解集并求參數(shù)的值,著重考查了一元二次不等式的應(yīng)用、一元二次不等式與一元二方程的關(guān)系等知識(shí)國(guó),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案