【題目】已知二次函數(shù).
(1)若是的兩個不同的根,是否存在實數(shù),使成立?若存在,求的值;若不存在,請說明理由.
(2)設,函數(shù)已知方程恰有3個不同的根.
(ⅰ)求的取值范圍;
(ⅱ)設分別是這3個根中的最小值與最大值,求的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】2019年1月1日起我國實施了個人所得稅的新政策,其政策的主要內容包括:(1)個稅起征點為5000元;(2)每月應納稅所得額(含稅)=收入-個稅起征點-專項附加扣除;(3)專項附加扣除包括:①贍養(yǎng)老人費用,②子女教育費用,③繼續(xù)教育費用,④大病醫(yī)療費用等,其中前兩項的扣除標準為:①贍養(yǎng)老人費用:每月扣除2000元,②子女教育費用:每個子女每月扣除1000元,新的個稅政策的稅率表部分內容如下:
級數(shù) | 一級 | 二級 | 三級 |
每月應納稅所得額元(含稅) | |||
稅率 | 3 | 10 | 20 |
現(xiàn)有李某月收入為18000元,膝下有一名子女在讀高三,需贍養(yǎng)老人,除此之外無其它專項附加扣除,則他該月應交納的個稅金額為( )
A.1800B.1000C.790D.560
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,底面是平行四邊形的四棱錐中,點是線段上的點,平面,平面,,,.
(1)求證:點是中點;
(2)求證:平面平面;
(3)求三棱錐底面上的高.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,四邊形為平行四邊形,,為中點,
(1)求證:平面;
(2)若是正三角形,且.
(Ⅰ)當點在線段上什么位置時,有平面 ?
(Ⅱ)在(Ⅰ)的條件下,點在線段上什么位置時,有平面平面?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中 ,為自然對數(shù)的底數(shù).
(Ⅰ)討論函數(shù)的單調性;
(Ⅱ)當時,若函數(shù)的圖象恒在直線的上方,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某租賃公司擁有汽車100輛,當每輛車的月租金為3000元時,可全部租出,當每輛車的月租金每增加50元時,未租出的車將會增加一輛,租出的車每輛每月需維護費150元,未租出的車每輛每月需要維護費50元。
(1)當每輛車的月租金定為3600元時,能租出多少輛車?
(2)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)為二次函數(shù),且f(x+1)+f(x﹣1)=2x2﹣4x,
(1)求f(x)的解析式;
(2)設g(x)=f(2x)﹣m2x+1,其中x∈[0,1],m為常數(shù)且m∈R,求函數(shù)g(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2016·桂林高二檢測)如圖所示,在四邊形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,將四邊形ABCD沿對角線BD折成四面體A′-BCD,使平面A′BD⊥平面BCD,則下列結論正確的是________.
(1)A′C⊥BD.(2)∠BA′C=90°.
(3)CA′與平面A′BD所成的角為30°.
(4)四面體A′-BCD的體積為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com