【題目】已知函數(shù)(其中, 為自然對(duì)數(shù)的底數(shù), …).

(1)若函數(shù)僅有一個(gè)極值點(diǎn),求的取值范圍;

(2)證明:當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn), ,且

【答案】(1)(2)見解析

【解析】試題分析:(1)求出函數(shù)的導(dǎo)函數(shù),轉(zhuǎn)化不等式,再通過的大小討論即可求的取值范圍;(2)通過的范圍及的零點(diǎn)個(gè)數(shù),即可確定函數(shù)恒成立的條件,通過構(gòu)造函數(shù)的方法,轉(zhuǎn)化成利用導(dǎo)函數(shù)求恒成立問題.

試題解析:(1),

得到 (*)

由于僅有一個(gè)極值點(diǎn),

關(guān)于的方程(*)必?zé)o解,

①當(dāng)時(shí),(*)無(wú)解,符合題意,

②當(dāng)時(shí),由(*)得,故由,

由于這兩種情況都有,當(dāng)時(shí), ,于是為減函數(shù),當(dāng)時(shí), ,于是為增函數(shù),∴僅的極值點(diǎn),綜上可得的取值范圍是;

(2)由(1)當(dāng)時(shí), 的極小值點(diǎn),

又∵對(duì)于恒成立,

對(duì)于恒成立,

對(duì)于恒成立,

∴當(dāng)時(shí), 有一個(gè)零點(diǎn),當(dāng)時(shí), 有另一個(gè)零點(diǎn),

,

,(#)

所以,

下面再證明,即證,

,

由于為減函數(shù),

于是只需證明,

也就是證明,

,

借助(#)代換可得,

,

,

的減函數(shù),且,

恒成立,

于是的減函數(shù),即

,這就證明了,綜上所述,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面ABCD⊥平面ADEF,四邊形ABCD為菱形,四邊形ADEF為矩形,M、N分別是EF、BC的中點(diǎn),AB=2AF=2,∠CBA=60°.

(1)求證:AN⊥DM;
(2)求直線MN與平面ADEF所成的角的正切值;
(3)求三棱錐D﹣MAN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,橢圓和拋物線交于兩點(diǎn),且直線恰好通過橢圓的右焦點(diǎn),

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)經(jīng)過的直線和橢圓交于兩點(diǎn),交拋物線于兩點(diǎn), 是拋物線的焦點(diǎn),是否存在直線,使得,若存在,求出直線的方程,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,四個(gè)頂點(diǎn)構(gòu)成的菱形的面積是4,圓過橢圓的上頂點(diǎn)作圓的兩條切線分別與橢圓相交于兩點(diǎn)(不同于點(diǎn)),直線的斜率分別為.

(1)求橢圓的方程;

(2)當(dāng)變化時(shí),①求的值;②試問直線是否過某個(gè)定點(diǎn)?若是,求出該定點(diǎn);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系 中,直線 的參數(shù)方程為 為參數(shù)),以該直角坐標(biāo)系的原點(diǎn) 為極點(diǎn), 軸的非負(fù)半軸為極軸的極坐標(biāo)系下,圓 的方程為
(1)求直線 的普通方程和圓 的圓心的極坐標(biāo);
(2)設(shè)直線 和圓 的交點(diǎn)為 、 ,求弦 的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察研究某種植物的生長(zhǎng)速度與溫度的關(guān)系,經(jīng)過統(tǒng)計(jì),得到生長(zhǎng)速度(單位:毫米/月)與月平均氣溫的對(duì)比表如下:

溫度

-5

0

6

8

12

15

20

生長(zhǎng)速度

2

4

5

6

7

8

10

(1)求生長(zhǎng)速度關(guān)于溫度的線性回歸方程;(斜率和截距均保留為三位有效數(shù)字);

(2)利用(1)中的線性回歸方程,分析氣溫從時(shí)生長(zhǎng)速度的變化情況,如果某月的平均氣溫是時(shí),預(yù)測(cè)這月大約能生長(zhǎng)多少.

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).(的圖象連續(xù)不斷)

(1) 的單調(diào)區(qū)間;

(2) 當(dāng)時(shí),證明:存在,使;

(3) 若存在屬于區(qū)間,且,使,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 ,函數(shù),函數(shù)軸上的截距我,與軸最近的最高點(diǎn)的坐標(biāo)是

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)將函數(shù)的圖象向左平移)個(gè)單位,再將圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到函數(shù)的圖象,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)有一個(gè)容積V一定的鋁合金蓋的圓柱形鐵桶,已知單位面積鋁合金的價(jià)格是鐵的3倍,當(dāng)總造價(jià)最少時(shí),桶高為(
A.
B.
C.2
D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案