設(shè)函數(shù)f(x)=
3
cos2wx+sinwxcoswx(其中w>0,a∈R)的最小正周期是4π
(1)求w的值;
(2)設(shè)函數(shù)g(x)對任意的x∈R都有g(shù)(x+π)=g(x),且當(dāng)x∈[0,π]時(shí),g(x)=
3
2
-f(x),求g(x)在[0,2π]上的解析式.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的求值
分析:(1)利用倍角公式,輔助角公式化簡f(x)=
3
cos2wx+sinwxcoswx,然后利用T=
2w
=4π,計(jì)算即可.
(2)設(shè)π<x≤2π,則0<x-π≤π,由g(x+π)=g(x)化簡即可得到g(x)在[π,2π]上的解析式.
解答: 解:(1)∵f(x)=
3
cos2wx+sinwxcoswx
=
3
2
cos2wx+
1
2
sin2wx+
3
2

=sin
π
3
cos2wx+cos
π
3
sin2wx+
3
2

=sin(2wx+
π
3
)+
3
2

T=
2w
=4π,
w=
1
4

(2)由(1)可知f(x)=sin(
1
2
x+
π
3
)+
3
2

設(shè)π<x≤2π,則
0<x-π≤π.
∵g(x+π)=g(x),
g(x)=g(x-π)=
3
2
-f(x-π)

=-sin[
1
2
(x-π)+
π
3
]

=-sin(
1
2
x-
π
6
)

g(x)=
-sin(
1
2
x+
π
3
) , x∈[0,π]
-sin(
1
2
x-
π
6
) , x∈(π,2π]
點(diǎn)評:本題主要考查三角恒等變換公式的靈活應(yīng)用和三角函數(shù)的周期性等知識(shí)的綜合應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知(a+bi)(1+i)=1+2i,其中i為虛數(shù)單位,則實(shí)數(shù)a,b滿足條件( 。
A、a=l,b=3
B、a=3,b=l
C、a=
1
2
,b=
3
2
D、a=
3
2
,b=
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系xoy中,已知A(1,0),B(0,1),C(-1,c)(c>0),且|OC|=2,若
OC
OA
OB
,則實(shí)數(shù)λ,μ的值分別是( 。
A、
3
,1
B、1,
3
C、-
3
,1
D、-1,
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知線段AB的端點(diǎn)B的坐標(biāo)是(1,2),端點(diǎn)A在圓(x+1)2+y2=4上運(yùn)動(dòng),求線段AB的中點(diǎn)M的軌跡方程,并說明軌跡的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(
1
2
x+
π
3
),x∈R.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[0,π]上的最大值及最小值;
(3)將函數(shù)y=sin(
1
2
x+
π
3
)的圖象作怎樣的變換可得到y(tǒng)=sinx的圖象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,1),
b
=(2,3),當(dāng)k為何值時(shí),
(1)k
a
+2
b
與2
a
-4
b
垂直?
(2)k
a
+2
b
與2
a
-4
b
平行?平行時(shí)它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若存在實(shí)數(shù)對(a,b),使得f(a+x)•f(a-x)=b對定義域中的每一個(gè)x都成立,則稱函數(shù)f(x)是“(a,b)型函數(shù)”.
(1)判斷函數(shù)f1(x)=x是否為“(a,b)型函數(shù)”,并說明理由;
(2)若函數(shù)f2(x)=tanx是“(a,b)型函數(shù)”,求滿足條件的實(shí)數(shù)對(a,b)所組成的集合;
(3)已知函數(shù)g(x)是“(a,b)型函數(shù)”,對應(yīng)的實(shí)數(shù)對(a,b)為(1,4).當(dāng)x∈[0,1]時(shí),g(x)=x2+m(x-1)+1(m>0),若當(dāng)x∈[0,2]時(shí),都有1≤g(x)≤4,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)計(jì)一個(gè)計(jì)算1+2+3+…+50的值的算法,并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3x-2.
(1)求在點(diǎn)P(2,0)處的切線方程;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

同步練習(xí)冊答案