精英家教網 > 高中數學 > 題目詳情

【題目】已知 ,若方程f(x)=kx有且僅有一個實數解,則實數k的取值范圍為

【答案】(﹣∞,e)
【解析】解: ,若方程f(x)=kx有且僅有一個實數解, 就是分段函數與y=kx的圖象只有一個交點,如圖:

顯然k小于OA的斜率時滿足題意,y=ex , x≥1,導函數為y′=ex , 是增函數,當x=1時函數取得最小值,此時OA的斜率最小,最小值為:e,可得k<e.
所以答案是:(﹣∞,e).
【考點精析】根據題目的已知條件,利用利用導數研究函數的單調性的相關知識可以得到問題的答案,需要掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在一個特定時段內,以點E為中心的7海里以內海域被設為警戒水域.點E正北55海里處有一個雷達觀測站A.某時刻測得一艘勻速直線行駛的船只位于點A北偏東45°且與點A相距40 海里的位置B,經過40分鐘又測得該船已行駛到點A北偏東45°+θ(其中sinθ= ,0°<θ<90°)且與點A相距10 海里的位置C. (Ⅰ)求該船的行駛速度(單位:海里/小時);
(Ⅱ)若該船不改變航行方向繼續(xù)行駛.判斷它是否會進入警戒水域,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=60°,平面BDEF⊥平面ABCD,四邊形BDEF是正方形,點M在線段EF上,

(1)當λ= ,求證:BM∥平面ACE;
(2)如二面角A﹣BM﹣C的平面角的余弦值為﹣ ,求實數λ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數y=sin(x+ )cos(x+ )的圖象沿x軸向右平移 個單位后,得到一個偶函數的圖象,則φ的取值不可能是(
A.
B.﹣
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ax3﹣bex(a∈R,b∈R),且f(x)在x=0處的切線與x﹣y+3=0垂直.
(1)若函數f(x)在[ ,1]存在單調遞增區(qū)間,求實數a的取值范圍;
(2)若f′(x)有兩個極值點x1 , x2 , 且x1<x2 , 求a的取值范圍;
(3)在第二問的前提下,證明:﹣ <f′(x1)<﹣1.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 ,函數f(x)的圖象記為曲線C.
(1)若函數f(x)在[0,+∞)上單調遞增,求c的取值范圍;
(2)若函數y=f(x)﹣m有兩個零點α,β(α≠β),且x=α為f(x)的極值點,求2α+β的值;
(3)設曲線C在動點A(x0 , f(x0))處的切線l1與C交于另一點B,在點B處的切線為l2 , 兩切線的斜率分別為k1 , k2 , 是否存在實數c,使得 為定值?若存在,求出c的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知AD是△ABC內角∠BAC的角平分線.
(1)用正弦定理證明: ;
(2)若∠BAC=120°,AB=2,AC=1,求AD的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)= 的定義域為(
A.( ,9)
B.[ ,9]
C.(0, ]∪[9,+∞)
D.(0, )∪(9,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.
(Ⅰ)在平面PAB內找一點M,使得直線CM∥平面PBE,并說明理由;
(Ⅱ)若二面角P﹣CD﹣A的大小為45°,求直線PA與平面PCE所成角的正弦值.

查看答案和解析>>

同步練習冊答案