9.已知log23=a,log72=b,則log421=$\frac{ab+1}{2b}$.(用a,b表示)

分析 由log23=a,log72=b,可得lg3=alg2,lg7=$\frac{lg2}$.代入即可得出.

解答 解:∵log23=a,log72=b,∴l(xiāng)g3=alg2,lg7=$\frac{lg2}$.
則log421=$\frac{lg3+lg7}{2lg2}$=$\frac{alg2+\frac{lg2}}{2lg2}$=$\frac{ab+1}{2b}$.
故答案為:=$\frac{ab+1}{2b}$.

點評 本題考查了對數(shù)的運算性質(zhì)、對數(shù)換底公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.定義在R上的奇函數(shù)f(x)滿足f(x+1)=-f(x),當x∈(0,1)時,f(x)=cos($\frac{π}{2}$x+$\frac{π}{2}$),則函數(shù)y=f(x)-log4|x|的零點個數(shù)是( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)的定義域為R,若對于任意的實數(shù)x,y,都有f(x+y)=f(x)+f(y),且x>0時,有f(x)>0.
(Ⅰ)判斷并證明函數(shù)f(x)的奇偶性;
(Ⅱ)判斷并證明函數(shù)f(x)的單調(diào)性;
(Ⅲ)設(shè)f(1)=1,若f(x)<m2-2am+1對所有x∈[-1,1],a∈[-1,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.拋物線頂點在原點,焦點在y軸上,又它的準線方程為y=3,則該拋物線的方程為x2=12y.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖,P為矩形ABCD所在平面外一點,矩形對角線交點為O,M為PB的中點,給出下面四個命題:①OM∥面PCD;②OM∥面PBC;③OM∥面PDA;④OM∥面PBA.其中正確命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.(1)填寫如表:
α$\frac{π}{6}$$\frac{π}{4}$$\frac{π}{3}$
sinα$\frac{1}{2}$$\frac{\sqrt{2}}{2}$$\frac{\sqrt{3}}{2}$
cosα$\frac{\sqrt{3}}{2}$$\frac{\sqrt{2}}{2}$$\frac{1}{2}$
(2)化簡:$\frac{cos(180°+α)•sin(α+360°)}{sin(-α-180°)•cos(-180°-α)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知$f(x)=x+\frac{x}-3$,x∈[1,2]
(1)若b=1時,求f(x)的值域;
(2)若b≥2時,f(x)的最大值為M,最小值為m,且滿足:M-m≥4,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.滿足不等式$|{\frac{x+1}{x}}|>\frac{x+1}{x}$的實數(shù)x的取值范圍是-1<x<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.海軍某艦隊在一未知海域向正西方向行駛(如圖),在A處測得北側(cè)一島嶼的頂端D的底部C在西偏北30°的方向上,行駛4千米到達B處后,測得該島嶼的頂端D的底部C在西偏北75°方向上,山頂D的仰角為30°,求此島嶼露出海平面的部分CD的高度.

查看答案和解析>>

同步練習冊答案